K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2018

x = 0; y ∈ {0;1;2;3;...;9}

26 tháng 1 2018

2/

a, |a+3|=7

Chia làm 2 trường hợp

TH1:                                        TH2:     

a+3=7                                      a+3=-7    

a=7-3                                       a=-7-3      

a=4                                          a=-11

b,|a-5|=(-5)+8

|a-5|=3

Chia làm 2 truờng hợp

TH1:                                        TH2:  

a-5=3                                       a-5=-3  

a=3+5                                      a=-3+5     

a=8                                          a=2      

26 tháng 1 2018

1/

a, Cộng 2 vế với y ta được :

x-y+y > 0+y

=> x > y

b, Trừ 2 vê với y ta được : 

x-y > y-y

=> x-y >0

2/

a, => a+3=-7 hoặc a+3=7

=> a=-10 hoặc a=4

b, => |a-5| = 3

=> a-5=-3 hoặc a-5=3

=> a=2 hoặc a=8

Tk mk nha

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .Bài 4 : Cho các...
Đọc tiếp

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :

\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .

Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :

\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)

Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :

\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .

Bài 4 : Cho các số dương a,b,c . Chứng minh :

\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1

Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)

Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :

\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

 

6
3 tháng 11 2019

neu de bai bai 1 la tinh x+y thi mik lam cho

4 tháng 11 2019

đăng từng này thì ai làm cho 

12 tháng 12 2019

Cho hàm số y= f(x) =2x -3

a, Tính f(-3): f(0,5): f(0)

b, Tìm x biết f(x)=7

Trả lời:

a, f(-3): f(0,5): f(0)

=[2(-3)-3]:[2(0,5)]:(2.0-3)

=(-6-3):(-3)

=3

b, f(x)=y=7=2x-3

<=>2x-3=7

<=>2x=7+3

<=>2x=10

<=>x=5

28 tháng 12 2015

1,Ta có

3x+7y=24

<=>3x=24-7y

Vì x là số tự nhiên

=>\(24-7y\ge0\)

<=>\(7y\le24\)

<=>\(y<4\) mà y là số tự nhiên

=>\(y=\left\{0;1;2;3\right\}\)

=>\(x=\left\{....\right\}\)

b,\(x^2-4x+2y-xy+9=0\)

<=>\(\left(x^2-4x+4\right)-y\left(x-2\right)+5=0\)

<=>\(\left(x-2\right)^2-y\left(x-2\right)=-5\)

<=>\(\left(x-2\right)\left(x-2-y\right)=5\)

Đến đây giải theo pp pt nghiệm nguyên.

Nếu mình làm đúng thì tick nha bạn,cảm ơn.

tick tui làm tiếp cho nha.

28 tháng 12 2015

dễ tích đi mk làm cho

1: Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x-y}{7-13}=\dfrac{42}{-6}=-7\)

=>x=-48; y=-91

2: x/y=3/4

=>4x=3y

=>4x-3y=0

mà 2x+y=10

nên x=3 và y=4

3: =>7x-3y=0 và x-y=-24

=>x=18 và y=42

4: =>7x-5y=0 và x+y=24

=>x=10 và y=14

12 tháng 7 2018

a)

Số học sinh giỏi là:

 50 x 16%= 8(học sinh)

Số học sinh khá là:

 8 x 175%= 14(học sinh)

Số học sinh trung bình là:

 50 - (8+14)= 28(học sinh)

b) 

Tỉ số của hs trung bình so với cả lớp là:

  28: 50 x 100= 56%

Tỉ số của hs khá so với cả lớp là:

 14:50 x 100= 28%

c) Bạn tự dựng biểu đồ nha.

13 tháng 7 2018

thank you bn nha! ^_^

a.tập hợp A có 1 phần tử(A={20})

b.tập hợp B có 1 phần tử(B={0})

c. tập hợp C có vô số phần tử(số nào nhân với 0 cũng bằng 0)

d. tập hợp này là tập hợp rỗng(0 nhân với số nào cũng bằng 0)