K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2018

Ta có: A =  1   +   2   +   2 2   +   . . .   +   2 2009   +   2 2010

= 1 + 2 ( 1 + 2 +  2 2 ) + ... + 2 2008  ( 1 + 2 +  2 2  )

= 1 + 2 ( 1 + 2 + 4 ) + ... + 22008 ( 1 + 2 + 4 )

= 1 + 2 . 7 + ... +  2 2008  . 7 = 1 + 7 ( 2 + ... +  2 2008  )

Mà 7 ( 2 + ... +  2 2008 ) ⋮ 7. Do đó: A chia cho 7 dư 1.

9 tháng 12 2016

A chia 7 dư 1

27 tháng 11 2017

Dư 1 nha bạn . 

27 tháng 11 2017
các bạn giải chi tiết giúp mik nha
17 tháng 5 2015

\(1+2+2^2+...+2^{2009}+2^{2010}\)

\(1+\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

=\(1+2\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

=\(1+\left(2+2^4+...+2^{2008}\right)\left(1+2+2^2\right)\)

=\(1+\left(2+2^4+...+2^{2008}\right)7\)

=>\(1+2+2^2+...+2^{2009}+2^{2010}\) chia cho 7 dư 1

 

28 tháng 10 2015

Ta có: A=20+21+22+23+…+22009+22010

=>A=(20+21+22)+…+(22008+22009+22010)

=>A=(20+21+22)+…+22008.(20+21+22)

=>A=7+…+22008.7

=>A=(1+…+22008).7 chia hết cho 7

=>A chia hết cho 7

=>A chia 7 dư 0