Cho hàm số y = - 1 2 x + 3
Hàm số đã cho là hàm số đồng biến hay nghịch biến? Vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm số y = (3 - 2 )x + 1 có hệ số a = 3 - 2 , hệ số b = 1
Ta có: a = 3 - 2 > 0 nên hàm số đồng biến trên R
\(\text{Ta có:}-m^2+m-4\\ =-\left(m^2-m+4\right)\\ =-\left[\left(m^2-m+\dfrac{1}{4}\right)+\dfrac{15}{4}\right]\\ =-\left(m-\dfrac{1}{2}\right)^2-\dfrac{15}{4}\le-\dfrac{15}{4}< 0\)
Vậy HSNB trên R
\(-m^2+m-4\)
\(=-\left(m^2-m+4\right)\)
\(=-\left(m^2-m+\dfrac{1}{4}+\dfrac{15}{4}\right)\)
\(=-\left(m-\dfrac{1}{2}\right)^2-\dfrac{15}{4}< 0\forall m\)
Vậy: Hàm số nghịch biến trên R
Vì \(-4< 0\) nên \(y=f\left(x\right)=-4x+3\) nghịch biến trên R
Vì \(\dfrac{1}{4}>0\) nên \(y=g\left(x\right)=\dfrac{1}{4}x-6\) đồng biến trên R
Ta có:
Ta được bảng sau:
b) Hàm số đã cho là hàm số nghịch biến trên R vì khi giá trị của biến x tăng lên mà giá trị tương ứng f(x) lại giảm đi.
Bài 1:
Hàm số y=(m-3)x+4 đồng biến trên R khi m-3>0
=>m>3
Hàm số y=(m-3)x+4 nghịch biến trên R khi m-3<0
=>m<3
Bài 4:
a: Vì \(a=3-\sqrt{2}>0\)
nên hàm số \(y=\left(3-\sqrt{2}\right)x+1\) đồng biến trên R
b: Khi x=0 thì \(y=0\left(3-\sqrt{2}\right)+1=1\)
Khi x=1 thì \(y=\left(3-\sqrt{2}\right)\cdot1+1=3-\sqrt{2}+1=4-\sqrt{2}\)
Khi \(x=\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)\cdot\sqrt{2}+1=3\sqrt{2}-2+1=3\sqrt{2}-1\)
Khi \(x=3+\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)-1\)
=9-4-1
=9-5
=4
Khi \(x=3-\sqrt{2}\) thì \(y=\left(3-\sqrt{2}\right)^2-1\)
\(=11-6\sqrt{2}-1=10-6\sqrt{2}\)
Hàm số \(y=\left(\sqrt{3}-2\right)x-1\) là nghịch biến vì \(\sqrt{3}-2=\sqrt{3}-\sqrt{4}< 0\)
Hàm số \(y=\left(\sqrt{3}-1\right)x-5\) là đồng biến vì \(\sqrt{3}-1>0\)
a) Hàm số \(y=\left(\sqrt{3}-2\right)x-1\) nghịch biến trên R vì \(\sqrt{3}-2< 0\)
b) Hàm số \(y=\left(\sqrt{3}-1\right)x-5\) đồng biến trên R vì \(\sqrt{3}-1>0\)
Hàm số đã cho là hàm số nghịch biến trên R vì khi giá trị của biến x tăng lên mà giá trị tương ứng f(x) lại giảm đi.