K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

Rút gọn

Để học tốt Toán 9 | Giải bài tập Toán 9

9 tháng 12 2018

2) \(S=a+\frac{1}{a}=\frac{15a}{16}+\left(\frac{a}{16}+\frac{1}{a}\right)\)

Áp dụng BĐT AM-GM ta có:

\(S\ge\frac{15a}{16}+2.\sqrt{\frac{a}{16}.\frac{1}{a}}=\frac{15.4}{16}+2.\sqrt{\frac{1}{16}}=\frac{15}{4}+2.\frac{1}{4}=\frac{15}{4}+\frac{1}{2}=\frac{15}{4}+\frac{2}{4}=\frac{17}{4}\)

\(S=\frac{17}{4}\Leftrightarrow a=4\)

Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)

9 tháng 12 2018

kudo shinichi sao cách làm giống của thầy Hồng Trí Quang vậy bạn?

\(S=a+\frac{1}{a}=\frac{15}{16}a+\left(\frac{a}{16}+\frac{1}{a}\right)\ge\frac{15}{16}a+2\sqrt{\frac{1.a}{16.a}}=\frac{15}{16}a+2.\frac{1}{4}\)

\(=\frac{15}{16}.4+\frac{1}{2}=\frac{17}{4}\Leftrightarrow a=4\)

Dấu "=" xảy ra khi a = 4

Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)

20 tháng 12 2018

Bài 2:

a) \(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}\)

\(A=\dfrac{a^3}{abc}+\dfrac{b^3}{abc}+\dfrac{c^3}{abc}\)

\(A=\dfrac{1}{abc}\left(a^3+b^3+c^3\right)\)

\(A=\dfrac{1}{abc}\left[\left(a+b\right)^3-3ab\left(a+b\right)+c^3\right]\)

\(a+b+c=0\)

Nên a + b = -c (1)

Thay (1) vào A, ta được:

\(A=\dfrac{1}{abc}\left[\left(-c\right)^3-3ab\left(-c\right)+c^3\right]\)

\(A=\dfrac{1}{abc}.3abc\)

\(A=3\)

b) \(B=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)

\(B=\dfrac{a^2}{a^2-\left(b^2+c^2\right)}+\dfrac{b^2}{b^2-\left(c^2+a^2\right)}+\dfrac{c^2}{c^2-\left(a^2+b^2\right)}\)

\(a+b+c=0\)

Nên b + c = -a

=> ( b + c )2 = (-a)2

=> b2 + c2 + 2bc = a2

=> b2 + c2 = a2 - 2bc (1)

Tương tự ta có: c2 + a2 = b2 - 2ac (2)

a2 + b2 = c - 2ab (3)

Thay (1), (2) và (3) vào B, ta được:

\(B=\dfrac{a^2}{a^2-\left(a^2-2bc\right)}+\dfrac{b^2}{b^2-\left(b^2-2ac\right)}+\dfrac{c^2}{c^2-\left(c^2-2ab\right)}\)

\(B=\dfrac{a^2}{a^2-a^2+2bc}+\dfrac{b^2}{b^2-b^2+2ac}+\dfrac{c^2}{c^2-c^2+2ab}\)

\(B=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)

\(B=\dfrac{a^3}{2abc}+\dfrac{b^3}{2abc}+\dfrac{c^3}{2abc}\)

\(B=\dfrac{1}{2abc}\left(a^3+b^3+c^3\right)\)

\(a^3+b^3+c^3=3abc\) ( câu a )

\(\Rightarrow B=\dfrac{1}{2abc}.3abc\)

\(\Rightarrow B=\dfrac{3}{2}\)

20 tháng 12 2018

Bài 1:

a) GT: abc = 2

\(M=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)

\(M=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{abc+2cb+2b}\)

\(M=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2+2cb+2b}\)

\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2\left(1+cb+b\right)}\)

\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)

\(M=\dfrac{1+b+bc}{bc+b+1}\)

\(M=1\)

b) GT: abc = 1

\(N=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)

\(N=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{cb}{b\left(ac+c+1\right)}\)

\(N=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{bc}{abc+bc+b}\)

\(N=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)

\(N=\dfrac{1+b+bc}{bc+b+1}\)

\(N=1\)

13 tháng 5 2021

1,

\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)

\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)

\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)

\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)

Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)

14 tháng 5 2021

2, 

a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)

b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)

\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)

\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)

c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)

2 tháng 11 2021

Bài 1:

\(P=2a^2-2b^2-a^2+2ab-b^2+a^2+2ab+b^2+b^2=2a^2-b^2+4ab\\ Q=\left(2x+3\right)^2+\left(2x-3\right)^2-2\left(2x-3\right)\left(2x+3\right)\\ Q=\left(2x+3-2x+3\right)^2=9^2=81\)

Bài 2:

\(Sửa:A=x^2+2xy+y^2-4x-4y+2=\left(x+y\right)^2-4\left(x+y\right)+4-2\\ A=\left(x+y-2\right)^2-2=\left(3-2\right)^2-2=1-2=-1\)

10 tháng 8 2019

bài 1: a) \(A=\frac{\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right)}{\frac{a+2}{a-2}}\)

\(A=\left(\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\right):\frac{a+2}{a-2}\)

\(A=\left(\frac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}\right)\cdot\frac{a-2}{a+2}\)

\(A=2\cdot\frac{a-2}{a+2}\left(a\ne0;a\ne\pm2\right)\)

b) để A = 1 => \(2\cdot\frac{a-2}{a+2}=1\)

=> 2a - 4 = a + 2

=> a = 6 (thỏa mãn)

10 tháng 8 2019

bài 2) a) ĐKXĐ: \(x\ne4\)

b) \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)

\(\Leftrightarrow B=\frac{2\sqrt{x}+\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow B=\frac{2\sqrt{x}+4}{x-4}=\frac{2}{\sqrt{x}-2}\)

c) \(B=\frac{2}{\sqrt{3+2\sqrt{3}}-2}\) \(\approx3,69\)

(bạn tự bấm máy tính nhé nhưng theo mình thấy nếu x = 4 + 2\(\sqrt{3}\) hay \(3+2\sqrt{2}\) thì sẽ cho kết quả đẹp hơn, k biết bạn có nhầm đề k nữa!)

27 tháng 11 2018

1/ a, \(A=\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)

\(=\dfrac{3}{2\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}\)

\(=\dfrac{3x-x+6}{2x\left(x+3\right)}\)

\(=\dfrac{2x+6}{2x\left(x+3\right)}\)

\(=\dfrac{2\left(x+3\right)}{2x\left(x+3\right)}\)

\(=\dfrac{1}{x}\)

Vậy \(A=x\)

b/ Khi \(x=\dfrac{1}{2}\Leftrightarrow A=\dfrac{1}{\dfrac{1}{2}}=2\)

Vậy...

2/a,

\(A=\dfrac{5x+2}{3x^2+2x}+\dfrac{-2}{3x+2}\)

\(=\dfrac{5x+2}{x\left(3x+2\right)}-\dfrac{2x}{x\left(3x+2\right)}\)

\(=\dfrac{5x+2-2x}{x\left(3x+2\right)}\)

\(=\dfrac{3x+2}{x\left(3x+2\right)}\)

\(=\dfrac{1}{x}\)

Vậy....

b/ Với \(x=\dfrac{1}{3}\Leftrightarrow A=\dfrac{1}{\dfrac{1}{3}}=3\)

Vậy..

24 tháng 4 2019

=(\(\frac{\sqrt{a-b}\left(\sqrt{a+b}-\sqrt{a-b}\right)}{\left(\sqrt{a+b}+\sqrt{a-b}\right)\left(\sqrt{a+b}-\sqrt{a-b}\right)}\)+\(\frac{a-b}{\sqrt{a-b}\left(\sqrt{a+b}-\sqrt{a-b}\right)}\)):\(\frac{\sqrt{a^2-b^2}}{a^2+b^2}\)

=(\(\frac{\sqrt{a^2-b^2}-\left(a-b\right)}{a+b-a+b}+\frac{\sqrt{a^2-b^2}+a-b}{a+b-a+b}\)):\(\frac{\sqrt{a^2-b^2}}{a^2+b^2}\)

=\(\frac{2\sqrt{a^2-b^2}}{2b}\):\(\frac{\sqrt{a^2-b^2}}{a^2+b^2}\)

=\(\frac{\sqrt{a^2-b^2}}{b}\)*\(\frac{a^2+b^2}{\sqrt{a^2-b^2}}\)

=\(\frac{a^2+b^2}{b}\)

25 tháng 4 2019

b/ Thế \(b=a-1\)thì ta có

\(P=\frac{a^2+\left(a-1\right)^2}{a-1}=\frac{2a^2-2a+1}{a-1}\)

\(\Leftrightarrow2a^2-\left(2+P\right)a+1+P=0\)

\(\Rightarrow\Delta_a=\left(2+P\right)^2-4.2.\left(1+P\right)\ge0\)

\(\Leftrightarrow P\ge2+2\sqrt{2}\)

21 tháng 9 2018

từ giả thiết ta có

a+b+c=0

<=>  a=-(b+c0

         a2=b2  +c2 +2bc

tương tự   b2=a2+c2+2ac

                c2=a2+b2+2ab

thay vào Q ta đc

\(Q=\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+c^2-b^2}\)

\(Q=\frac{1}{a^2+b^2-a^2-b^2-2ab}+\frac{1}{b^2+c^2-b^2-c^2-2bc}+\frac{1}{a^2+c^2-a^2-c^2-2ac}\)

\(Q=\frac{-1}{2ab}-\frac{1}{2bc}-\frac{1}{2ac}\)

\(Q=\frac{-b-a-c}{2abc}\)

\(Q=\frac{-\left(a+b+c\right)}{2abc}\)

\(Q=0\)

Vậy với a,b,c khác 0, a+b+c=0 thì Q=0