Cho hai góc phụ nhau α và β. Tính giá trị của biểu thức A = cosα.cosβ - sinα.sinβ.
A. 0
B. 1
C. -1
D. 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Hai góc α và β bù nhau nên sinα = sinβ và cosα = - cosβ.
Do đó P = cosα.cosβ- sinα.sinβ.
= -cos2α – sin2α = -1
Chọn B.
Hai góc α và β phụ nhau nên sinα = cosβ và cosα = sinβ.
Do đó, P = sinα.cosβ+ sinβ.cosα = sin2α + cos2α = 1.
Hai góc α và β phụ nhau nên sin α = cos β ; cos α = sin β .
Do đó, P = cos α cos β − sin β sin α = cos α sin α − cos α sin α = 0 .
Chọn A.
Hai góc α và β bù nhau nên sin α = sin β ; cos α = − cos β .
Do đó P = cos α cos β − sin β sin α = − cos 2 α − sin 2 α = − sin 2 α + cos 2 α = − 1 .
Chọn C.
Hai góc α và β phụ nhau nên sin α = cos β ; cos α = sin β .
Do đó, P = sin α cos β + sin β cos α = sin 2 α + cos 2 α = 1 .
Chọn B.
a) a = c, b = - d
b) a = -c, b = d
c) a = d, b = c
d) a = -c, b = - d
Chọn A.
Hai góc α và β phụ nhau nên sinα = cosβ và cosα = sinβ.
Do đó, A = cosα.cosβ - sinα.sinβ = cosαsinα - cosα.sinα = 0.