Cho hai góc phụ nhau α và β . Tính giá trị của biểu thức P = sinα.cosβ + sinβ.cosα.
A. 0
B. 1
C. -1
D. 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Hai góc α và β phụ nhau nên sinα = cosβ và cosα = sinβ.
Do đó, A = cosα.cosβ - sinα.sinβ = cosαsinα - cosα.sinα = 0.
Chọn C.
Hai góc α và β bù nhau nên sinα = sinβ và cosα = - cosβ.
Do đó P = cosα.cosβ- sinα.sinβ.
= -cos2α – sin2α = -1
Hai góc α và β phụ nhau nên sin α = cos β ; cos α = sin β .
Do đó, P = cos α cos β − sin β sin α = cos α sin α − cos α sin α = 0 .
Chọn A.
Hai góc α và β bù nhau nên sin α = sin β ; cos α = − cos β .
Do đó P = cos α cos β − sin β sin α = − cos 2 α − sin 2 α = − sin 2 α + cos 2 α = − 1 .
Chọn C.
Hai góc α và β phụ nhau nên sin α = cos β ; cos α = sin β .
Do đó, P = sin α cos β + sin β cos α = sin 2 α + cos 2 α = 1 .
Chọn B.
Hai góc nhọn α và β phụ nhau thì :
sin α = cos β ; c o s α = s i n β ; t a n α = c o t β ; cot α = t a n β .
Chọn A.
Chọn B.
Hai góc α và β phụ nhau nên sinα = cosβ và cosα = sinβ.
Do đó, P = sinα.cosβ+ sinβ.cosα = sin2α + cos2α = 1.