K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2019

Chọn D

 S n = 2 2 + 1 2 2 + 2 + 2 4 + 1 2 4 + 2 + ... + 2 2 n + 1 2 2 n + 2   = 2 2 + 2 4 + ... + 2 2 n + 1 2 2 + 1 2 4 + ... + 1 2 2 n + 2 n    = 4. 1 − 4 n 1 − 4 + 1 4 1 − 1 4 n 1 − 1 4 + 2 n    = 4 n − 1 3 4 − 1 4 n + 2 n .

8 tháng 3 2023

Câu a:

n = int(input("Nhập số nguyên n: "))

S = 0

for i in range(1, n+1):

     S += i

print("Tổng S =", S)

Câu b:

n = int(input("Nhập số nguyên n: "))

S = 0

for i in range(1, n, 2):

     S += i

print("Tổng S =", S)

Câu c: 

def calc_sum(n):

     s=0

     for i in range(1,n+1):

          s += 2*i

     return s

n = int(input("Nhập vào số n: "))

print("Tổng S=2+4+6+...2n là:",calc_sum(n))

 

9 tháng 3 2023

n = int(input("Nhập số nguyên n: "))

S = 0

for i in range(1, n+1):

     S += i

print("Tổng S =", S)

Câu b:

n = int(input("Nhập số nguyên n: "))

S = 0

for i in range(1, n, 2):

     S += i

print("Tổng S =", S)

Câu c: 

def calc_sum(n):

     s=0

     for i in range(1,n+1):

          s += 2*i

     return s

n = int(input("Nhập vào số n: "))

print("Tổng S=2+4+6+...2n là:",calc_sum(n))

uses crt;

var s:real;

i,n:integer;

begin

clrscr;

readln(n);

s:=0;

for i:=1 to n do 

  s:=s+(n*(n+1))/((n+2)*(n+3));

writeln(s:4:2);

readln;

end.

20 tháng 2 2022

Viết thân thôi hen

Var n,i,s:integer;

Read(n);

s:=0;

For i:=1 to n do

 If i mod 2 <>0 then s:=s+i else s:=s-i;

Write(s);

end.

20 tháng 2 2022

mong mn giúp vs ạ
đang gấp

22 tháng 7 2023

1/

\(N=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)=\)

\(=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)=\)

Đặt 

\(A=1.2+2.3+3.4+...+99.100\)

\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3=\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)=\)

\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=\)

\(=99.100.101\Rightarrow A=\dfrac{99.100.101}{3}=33.100.101\)

Đặt

\(B=1+2+3+...+99=\dfrac{99.\left(1+99\right)}{2}=4950\)

\(\Rightarrow N=A-B\)

2/

Số hạng cuối cùng là 10000 hoặc 1000000 mới làm được

\(A=1^2+2^2+3^2+...+100^2\) 

Tính như câu 1

3/ Làm như bài 4

4/

\(S=1^2+3^2+5^2+...+99^2=\)

\(=1.\left(3-2\right)+3\left(5-2\right)+5\left(7-2\right)+...+99\left(101-2\right)=\)

\(=\left(1.3+3.5+5.7+...+99.101\right)-2\left(1+3+5+...+99\right)\)

Đặt

\(B=1+3+5+...+99=\dfrac{50.\left(1+99\right)}{2}=2500\) 

Đặt

\(A=1.3+3.5+5.7+...+99.101\)

\(6A=1.3.6+3.5.6+3.7.6+...+99.101.6=\)

\(=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+99.101.\left(103-97\right)=\)

\(=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=\)

\(=3+99.101.103\Rightarrow A=\dfrac{3+99.101.103}{6}\)

\(\Rightarrow S=A-2B\)

GH
22 tháng 7 2023

Bài 1:

\(N=1^2+2^2+3^3+...+99^2\)

\(N=1.1+2.2+3.3+...+99.99\)

\(N=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)

\(N=1.2-1+2.3-2+3.4-3+...+99.100-99\)

\(N=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)

Đặt \(\left\{{}\begin{matrix}A=1.2+2.3+3.4+...+99.100\\B=1+2+3+...+99\end{matrix}\right.\)

+) Tính \(A=1.2+2.3+3.4+...+99.100\)

Ta có:

\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3\)

\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)

\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)

\(3A=99.100.101\)

\(\Rightarrow A=\dfrac{99.100.101}{3}=333300\)

+) Tính \(B=1+2+3+...+99\)

\(B\) có số số hạng là: \(\dfrac{99-1}{1}\) + 1 = 99 (số hạng)

\(\Rightarrow B=\dfrac{\left(99+1\right).99}{2}=4950\)

\(\Rightarrow N=A-B=333300-4950=328350\)

\(\Rightarrow N=328350\)

 

 

20 tháng 4 2016

Ta có : \(S=\left(4+2+\frac{1}{4}\right)+\left(16+2+\frac{1}{16}\right)+..+\left(2^{2n}+2+\frac{1}{2^{2n}}\right)\)

              \(=\left(4+16+...+2^{2n}\right)+2n+\left(\frac{1}{4}+\frac{1}{16}+.....+\frac{1}{2^{2n}}\right)\)

Áp dụng công thức tính tổng của n số hạng đầu của một cấp số nhân \(S_n=u_1\frac{q^n-1}{q-1}\)

\(S=4.\frac{4^{n-1}}{3}+2n+\frac{1}{4}.\frac{2^{\frac{1}{2n}}-1}{\frac{1}{4}-1}=4.\frac{4^n-1}{3}+2n+\frac{1}{3}.\frac{2^{2n}-1}{2^{2n}}\)

  \(=2n+\frac{4^n-1}{3}.\frac{4.4^n+1}{4^n}=2n+\frac{\left(4^n-1\right)\left(4^{n+1}+1\right)}{3.4^n}\)

30 tháng 1 2021

Tại sao lại cộng 2 vào vế S đầu tiên vậy

 

17 tháng 12 2023

b: \(2n+8⋮n-1\)

=>\(2n-2+10⋮n-1\)

=>\(10⋮n-1\)

=>\(n-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

=>\(n\in\left\{2;0;3;-1;6;-4;11;-9\right\}\)

mà n là số tự nhiên

nên \(n\in\left\{2;0;3;6;11\right\}\)

a: \(S=1+2^2+2^4+...+2^{100}\)

=>\(4\cdot S=2^2+2^4+2^6+...+2^{102}\)

=>\(4\cdot S-S=2^2+2^4+2^6+...+2^{102}-1-2^2-2^4-...-2^{100}\)

=>\(3\cdot S=2^{102}-1\)

=>\(S=\dfrac{2^{102}-1}{3}\)

20 tháng 2 2018

\(\text{Ta có : n.n! = [(n + 1) - 1].n! = (n + 1).n! - n! = 1.2.3.....n.(n + 1) - n! = (n + 1)! - n! }v\)  

Sn=1.1! + 2.2! + 3.3! + ... + n.n!
\(\text{= 2! - 1! + 3! - 2! + 4! - 3! + ... + (n + 1)! - n!}\)
\(\text{= - 1! + (n + 1)!}\)
\(\text{= (n + 1)! - 1}\)