K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2021

ai giúp em với em cần gấp ạ

 

10 tháng 11 2021

\(2xy+x-3y=1\\ \Leftrightarrow4xy+2x-6y-2=0\\ \Leftrightarrow2x\left(2y+1\right)-3\left(2y+1\right)=-1\\ \Leftrightarrow\left(2x-3\right)\left(2y+1\right)=-1\)

Từ đó bạn suy ra các trường hợp thôi

 

NV
11 tháng 11 2021

\(xy-2y=x^2+4\)

\(\Leftrightarrow y\left(x-2\right)=x^2+4\)

- Với \(x=2\) không phải nghiệm của pt

- Với \(x\ne2\)

\(\Rightarrow y=\dfrac{x^2+4}{x-2}=\dfrac{x^2-4+8}{x-2}=x+2+\dfrac{8}{x-2}\)

Do \(y\in Z\Rightarrow\dfrac{8}{x-2}\in Z\Rightarrow x-2=Ư\left(8\right)\)

\(\Rightarrow x-2=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

\(\Rightarrow x=\left\{-6;-2;0;1;3;4;6;10\right\}\)

Thay x tương ứng vào \(y=\dfrac{x^2+4}{x-2}\) ta được các cặp nghiệm nguyên của pt:

\(\left(x;y\right)=\left(-6;-5\right);\left(-2;-2\right);\left(0;-2\right);\left(1;-5\right);\left(3;13\right);\left(4;10\right);\left(6;10\right);\left(10;13\right)\)

uses crt;

const fi='baitap.txt';

var f1:text;

x,y:integer;

begin

clrscr;

assign(f1,fi); reset(f1);

readln(f1,x,y);

writeln(sqrt(x*x+y*y):4:2);

close(f1);

readln;

end.

A=1/3x^2y-1/3x^2y+xy^2-xy+1/2xy^2-5xy

=3/2xy^2-6xy

=3/2*1/2*1^2-6*1/2*1

=3/4-3=-9/4

`@` `\text {Ans}`

`\downarrow`

`A = 1/3x^2y + xy^2 - xy + 1/2xy^2 - 5xy - 1/3x^2y`

`= (1/3 x^2y - 1/3x^2y) + (xy^2 + 1/2xy^2) + (-xy - 5xy)`

`= 3/2 xy^2 - 6xy`

Thay `x = 1/2; y = 1` vào A

`A = 3/2* 1/2 * 1^2 - 6*1/2 * 1`

`= 3/4 - 3`

`= -9/4`

Vậy, `A = -9/4.`

15 tháng 7 2020

x2 + 2y2 + 2xy + 3y - 4 = 0

<=> 4x2 + 8y2 + 8xy + 12y - 16 = 0

<=> (4x2 + 8xy + 4y2) + (4y2 + 12y + 9) = 25

<=> (2x+  2y)2 +  (2y + 3)2 = 25 = 0 + 52 = 32 + 42

Do x;y là số nguyên và 2y + 3 là số lẻ => (2y + 3)2 thuộc {52; 32}

Xét các TH xảy ra:

+)\(\hept{\begin{cases}2x+2y=0\\2y+3=5\end{cases}}\) <=> \(\hept{\begin{cases}x+y=0\\y=1\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=0\\2y+3=-5\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=4\\2y+3=3\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=-4\\2y+3=-3\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=4\\2y+3=-3\end{cases}}\)

+) \(\hept{\begin{cases}2x+2y=-4\\2y+3=3\end{cases}}\)

(Tự tính x;y)

27 tháng 5 2016

a) (x-2)(2y-1)=6

=>x-2 và 2y-1 thuộc Ư(6)

lập bảng làm típ

b,c phân tích ra thành nt cũng tt a lập bảng

27 tháng 5 2016

a) (x-2)(2y-1)=6

=>x-2 và 2y-1 thuộc Ư(6)

lập bảng làm típ

b,c phân tích ra thành nt cũng tt a lập bảng

NV
16 tháng 4 2022

\(\Leftrightarrow4.25^x-4.5^x+1=4y^4+8y^3+12y^2+16y+41\)

\(\Leftrightarrow\left(2.5^x-1\right)^2=4y^4+8y^3+12y^2+16y+41\)

Ta có:

\(4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+2\right)^2+8y+37>\left(2y^2+2y+2\right)^2\)

\(4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+5\right)^2+4\left(y-1\right)\left(3y+4\right)\ge\left(2y^2+2y+5\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+3\right)^2\\4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+4\right)^2\\4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+5\right)^2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y^2-y-8=0\left(\text{không có nghiệm nguyên}\right)\\8y^2-25=0\left(\text{không có nghiệm nguyên}\right)\\\left(y-1\right)\left(3y+4\right)=0\end{matrix}\right.\) 

\(\Rightarrow y=1\)

Thế vào pt ban đầu: \(25^x-5^x=20\)

Đặt \(5^x=t>0\Rightarrow t^2-t-20=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-4\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow5^x=5\Rightarrow x=1\)

18 tháng 4 2022

Em cám ơn  thầy nhiều lắm ạ!