K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2016

ket qua la ;49/303

tick nha

13 tháng 1 2016

Cảm ơn mọi người nhiều!

7 tháng 2 2023

`1/15+1/35+1/63+1/99+1/143`

`=1/[3.5]+1/[5.7]+1/[7.9]+1/[9.11]+1/[11.13]`

`=1/2(2/[3.5]+2/[5.7]+2/[7.9]+2/[9.11]+2/[11.13])`

`=1/2.(1/3-1/5+1/5-1/7+...+1/11-1/13)`

`=1/2.(1/3-1/13)`

`=1/2 . 10/39`

`=5/39`

29 tháng 3 2017

B = 1/3*5 + 1/5*7 + 1/7*9 + 1/9*11 + 1/11*13

   = 1/2 * ( 2/3*5 + 2/5*7 + 2/7*9 + 2/9*11 + 2/11*13)

   = 1/2 * ( 1/3 - 1/5 + 1/5 -1/7 + ...+ 1/11 - 1/13)

   = 1/2 * ( 1/3 - 1/11)

   = 1/2 * 8/33

   = 4/33

29 tháng 3 2017

\(B=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)

\(B=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)

\(B=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)\)

\(B=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{13}\right)\)

\(B=\frac{1}{2}.\frac{12}{39}\)

\(B=\frac{2}{13}\)

23 tháng 8 2023

\(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{25}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\)

\(=\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+\dfrac{2}{11\cdot13}\right)\cdot\dfrac{1}{2}+\dfrac{1}{25}\)

\(=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-...+\dfrac{1}{11}-\dfrac{1}{13}\right)\cdot\dfrac{1}{2}+\dfrac{1}{25}\)

\(=\left(1-\dfrac{1}{3}\right)\cdot\dfrac{1}{2}+\dfrac{1}{25}\)

\(=\dfrac{2}{3}\cdot\dfrac{1}{2}+\dfrac{1}{25}\)

\(=\dfrac{1}{3}+\dfrac{1}{25}\)

\(=\dfrac{28}{75}\)

24 tháng 8 2023

cám ơi bạn

 

23 tháng 2 2020

\(-23\cdot63+23\cdot21-58\cdot23\)

\(=23\left(-63+21-58\right)\)

\(=23\cdot\left(-100\right)\)

\(=-2300\)

23 tháng 2 2020

Trả lời:

-23 . 63 + 23 . 21 - 58 . 23

= 23 . (-63 + 21 - 58)

= 23 . (-100)

= -2300

Hok tốt!

Vuong Dong Yet

22 tháng 7 2015

\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)

\(=\frac{1}{2}\cdot\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}+\frac{2}{13\cdot15}\right)\)

\(=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)

\(=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{15}\right)=\frac{1}{2}\cdot\frac{4}{15}=\frac{2}{15}\)

19 tháng 7 2023

a/

\(A=1.2+1.2+2.3+2.2+3.4+3.2+...+66.67+66.2=\)

\(=\left(1.2+2.3+3.4+...+66.67\right)+2\left(1+2+3+...+66\right)\)

Đặt

\(B=1+2+3+...+66=\dfrac{66\left(1+66\right)}{2}=2211\)

Đặt 

\(C=1.2+2.3+3.4+...+66.67\)

\(3C=1.2.3+2.3.3+3.4.3+...+66.67.3=\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+66.67.\left(68-65\right)=\)

\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-65.66.67+66.67.68=\)

\(=66.67.68\Rightarrow C=\dfrac{66.67.68}{3}=22.67.68\)

\(\Rightarrow A=C+2B\) Bạn tự tính nhé

b/

\(B=2\left(1.50+2.49+3.48+...+25.26\right)=\)

Ta có

\(C=1.50+2.49+3.48+...+25.26=\)

\(\left(50-49\right).50+\left(50-48\right).49+\left(50-47\right).48+...+\left(50-25\right).26=\)

\(=50.50-49.50+50.49-48.49+50.48-47.48+50.26-25.26=\)

\(=50.\left(26+27+28+...+50\right)-\left(25.26+26.27+27.28+...+49.50\right)\)

Ta có

\(D=26+27+28+...+50=\dfrac{25.\left(26+50\right)}{2}=950\)

Ta có

\(E=25.26+26.27+27.28+...+49.50\)

\(3E=25.26.3+26.27.3+27.28.3+...+49.50.3=\)

\(=25.26.\left(27-24\right)+26.27.\left(28-25\right)+...+49.50.\left(51-48\right)=\)

\(=-24.25.26+25.26.27-25.26.27+26.27.28-...-48.49.50+49.50.51=\)

\(=49.50.51-24.25.26\)

\(\Rightarrow E=\dfrac{49.50.51-24.25.26}{3}\)

\(\Rightarrow C=50D-E\)

\(B=2C\)

Bạn tự tính nhé

25 tháng 12 2016

\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\)

\(A=\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+...+\frac{1}{99\times101}\)

\(A=\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(A=\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{101}\right)\)

\(A=\frac{1}{2}\times\frac{98}{303}\)

\(A=\frac{49}{303}\)

25 tháng 12 2016

A= \(\frac{1}{15}\)\(\frac{1}{35}\)+ ... + \(\frac{1}{9999}\)

A= \(\frac{1}{3.5}\)\(\frac{1}{5.7}\) + ... + \(\frac{1}{99.101}\)

2. A= \(\frac{2}{3.5}\) + \(\frac{2}{5.7}\) + ... + \(\frac{2}{99.101}\)

2.A = \(\frac{1}{3}\) - \(\frac{1}{5}\)\(\frac{1}{5}\)-\(\frac{1}{7}\) + ... + \(\frac{1}{99}\) - \(\frac{1}{101}\)

2.A= \(\frac{1}{3}\) - \(\frac{1}{101}\)

2.A= \(\frac{101}{303}\) - \(\frac{3}{303}\)

2.A= \(\frac{98}{303}\)

A  = \(\frac{98}{303}\) : 2

A  = \(\frac{49}{303}\)

Vay A=\(\frac{49}{303}\)

15 tháng 12 2016

A=\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+..+\frac{1}{9999}\)

\(=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+..+\frac{1}{99.101}\)

\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+..+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\)

\(=\frac{1}{2}.\frac{98}{303}=\frac{49}{303}\)

15 tháng 12 2016

49/303 nha bạn

Kb với mình rồi mình giải kĩ cho

@@@@@###

25 tháng 7 2019

Đặt \(A=\)\(\frac{1}{15}+\frac{1}{35}+...+\frac{1}{143}\)

\(=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{11.13}\)

\(2A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{11.13}\)

\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\)

\(2A=\frac{1}{3}-\frac{1}{13}=\frac{10}{39}\)

\(A=\frac{5}{39}\)

Câu còn lại cx dựa như vậy nhé bn ! 

Chúc bn hc tốt <3

25 tháng 7 2019

câu c hình như sai đề hả bn