tìm số nguyên x,y sao cho x-2xy+y=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-2xy+y=0\)
\(\Leftrightarrow2x-4xy+2y=0\)
\(\Leftrightarrow2x-4xy+2y-1=-1\)
\(\Leftrightarrow2x.\left(1-2y\right)+\left(2y-1\right)=-1\)
\(\Leftrightarrow\left(2x-1\right).\left(1-2y\right)=-1\)
\(\Rightarrow\hept{\begin{cases}2x-1=1\\1-2y=-1\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}2x-1=-1\\1-2y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy...
xy+2x+y+11=0
x(y+2)+(y+2)+9=0
=>(y+2)(x+1)=-9
Ta có bảng sau
y+2 | -9 | -1 | -3 | 1 | 3 | 9 |
x+1 | 1 | 9 | 3 | -9 | -3 | -1 |
y | -11 | -3 | -5 | -1 | 1 | 7 |
x | 0 | 8 | 2 | -10 | -4 | -2 |
\(a,\Leftrightarrow y\left(x+1\right)-3\left(x+1\right)=5\\ \Leftrightarrow\left(x+1\right)\left(y-3\right)=5=5.1=\left(-5\right)\left(-1\right)\\ TH_1:\left\{{}\begin{matrix}x+1=1\\y-3=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=8\end{matrix}\right.\\ TH_2:\left\{{}\begin{matrix}x+1=5\\y-3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\\ TH_3:\left\{{}\begin{matrix}x+1=-5\\y-3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=2\end{matrix}\right.\\ TH_4:\left\{{}\begin{matrix}x+1=-1\\y-3=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-2\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(0;8\right);\left(4;4\right);\left(-6;2\right);\left(-2;-2\right)\right\}\)
\(b,\Leftrightarrow6\left(n-1\right)+11⋮n-1\\ \Leftrightarrow n-1\in\left\{-11;-1;1;11\right\}\\ \Leftrightarrow n\in\left\{-10;0;2;12\right\}\)
chúc bạn hok tốt nha :)
Oái gặp bn trùng tên nè!
a) Để phân số \(\dfrac{a^2+a+3}{a+1}\) là số nguyên thì :
\(a^2+a+3⋮a+1\)
Mà \(a+1⋮a+1\)
\(\Rightarrow\left\{{}\begin{matrix}a^2+a+3⋮a+1\\a^2+a⋮a+1\end{matrix}\right.\)
\(\Rightarrow3⋮a+1\)
Vì \(a\in Z\Rightarrow a+1\in Z;a+1\inƯ\left(3\right)\)
Ta có bảng :
\(a+1\) | \(1\) | \(3\) | \(-1\) | \(-3\) |
\(a\) | \(0\) | \(2\) | \(-2\) | \(-4\) |
\(Đk\) \(a\in Z\) | TM | TM | TM | TM |
Vậy \(a\in\left\{0;2;-2;-4\right\}\) là giá trị cần tìm
b) Ta có :
\(x-2xy+y=0\)
\(\Rightarrow2x-4xy-2y=0\)
\(\Rightarrow\left(2x-4xy\right)+2y-1=0-1\)
\(\Rightarrow\left(2x-4xy\right)-\left(1-2y\right)=-1\)
\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)
\(\Rightarrow\left(1-2y\right)\left(2x-1\right)=-1\)
Vì \(x,y\in Z\Rightarrow1-2y;2x-1\in Z,1-2y;2x-1\inƯ\left(-1\right)\)
Ta có bảng :
\(x\) | \(2x-1\) | \(1-2y\) | \(y\) | \(Đk\) \(x,y\in Z\) |
\(0\) | \(-1\) | \(1\) | \(0\) | TM |
\(1\) | \(1\) | \(-1\) | \(1\) | TM |
Vậy cặp giá trị \(\left(x,y\right)\) cần tìm là :
\(\left(0,0\right);\left(1,1\right)\)
b) \(x-2xy+y=0\)
\(\Rightarrow x-\left(2xy-y\right)=0\)
\(\Rightarrow x-y\left(2x-1\right)=0\)
\(\Rightarrow2x-2y\left(2x-1\right)=0\)
\(\Rightarrow\left(2x-1\right)-2y\left(2x-1\right)=0-1=-1\)
\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=-1\)
Ta có:
TH1: \(\left\{{}\begin{matrix}2x-1=1\\1-2y=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
TH2:\(\left\{{}\begin{matrix}2x-1=-1\\1-2y=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy...................