Cho hình chóp S.ABC, đáy ABC có AB = 10cm, BC = 12cm, AC = 14cm, các mặt bên cùng tạo với mặt phẳng đáy các góc bằng nhau và bằng α với tanα = 3. Thể tích của khối chóp S.ABC là:
A. 186 cm 3
B. 244 cm 3
C. 192 cm 3
D. 354 cm 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Gọi H là chân đường vuông góc hạ từ S xuống mặt phẳng đáy.
Kẻ HM, HN, HP lần lượt vuông góc với các cạnh AB, BC, CA.
Khi đó ta có SM, SN, SP lần lượt vuông góc với AB, BC, CA.
Do đó:
Khi đó: H M = H N = H P = H S tan α = H S 3
Suy ra H là tâm đường tròn nội tiếp tam giác ABC bán kính HM.
Áp dụng công thức Hê-rông ta có: S ∆ A B C = 24 6 (đvdt)
⇒ H M = S ∆ A B C p = 4 6 3
⇒ H S = 3 H M = 4 6
⇒ V S . A B C = 1 3 H S . S ∆ A B C = 192 (đvtt).
Chọn B.
Gọi H là chân đường cao của khối chóp S.ABC.
Lần lượt gọi hình chiếu của H trên các cạnh AB, BC, CA là D, E. F.
Khi đó ta có, góc giữa các mặt phẳng (SAB), (SBC), (SCA) với mặt đáy (ABC) lần lượt là SDH, SHE, SFH và Từ đó suy ra DH = HE = HF. Suy ra H là tâm đường tròn nội tiếp tam giác ABC.
Ta có
Suy ra
Suy ra chọn B
Đáp án D
Gọi H là hình chiếu của S trên A C ⇒ S H ⊥ A B C
Kẻ H M ⊥ A B M ∈ A B , H N ⊥ A C N ∈ A C
Suy ra S A B ; A B C ^ = S B C ; A B C ^ = S M H ^ = S N H ^ = 60 °
⇒ ∆ S H M = ∆ S H N ⇒ H M = H N ⇒ H là trung điểm của AC
Tam giác SHM vuông tại H, có tan S M H ^ = S H H M ⇒ S H = a 3 2
Diện tích tam giác ABC là S ∆ A B C = 1 2 . A B . B C = a 2 2
Vậy thể tích cần tính là V = 1 3 . S H . S A B C = 1 3 . a 3 2 . a 2 2 = a 3 3 12
Đáp án D