K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 3 2021

Ta sẽ chứng minh:

\(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}\)

Thật vậy, bình phương 2 vế, BĐT tương đương:

\(a^2+x^2+b^2+y^2+2\sqrt{a^2b^2+x^2y^2+a^2y^2+b^2x^2}\ge a^2+b^2+x^2+y^2+2ab+2xy\)

\(\Leftrightarrow\sqrt{a^2b^2+x^2y^2+a^2y^2+b^2x^2}\ge ab+xy\)

\(\Leftrightarrow a^2b^2+x^2y^2+a^2y^2+b^2x^2\ge a^2b^2+x^2y^2+2abxy\)

\(\Leftrightarrow a^2y^2+b^2x^2-2abxy\ge0\)

\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) (luôn đúng)

Áp dụng:

\(VT=\sqrt{a^2+x^2}+\sqrt{b^2+y^2}+\sqrt{c^2+z^2}\)

\(VT\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}+\sqrt{c^2+z^2}\ge\sqrt{\left(a+b+c\right)^2+\left(x+y+z\right)^2}\) (đpcm)

9 tháng 4 2020

Ta có: a < b

=> a - b < 0

=>  a - b - a < 0 - a

=> - b < - a.

Vậy.....

28 tháng 2 2017

2a)với a,b,c là các số thực ta có 

\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)

\(\Rightarrow\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left|a+b\right|\)

tương tự \(\sqrt{b^2-bc+c^2}\ge\frac{1}{2}\left|b+c\right|\)

tương tự \(\sqrt{c^2-ca+a^2}\ge\frac{1}{2}\left|a+c\right|\)

cộng từng vế mỗi BĐT ta được \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\ge\frac{2\left(a+b+c\right)}{2}=a+b+c\)

dấu "=" xảy ra khi và chỉ khi a=b=c

27 tháng 4 2022

`a) 2 ( a^2 + b^2 ) >= ( a + b )^2`

`<=> 2a^2 + 2b^2 >= a^2 + 2ab + b^2`

`<=> a^2 - 2ab + b^2 >= 0`

`<=> ( a - b )^2 >= 0` (Luôn đúng `AA a,b`)

     `=>` Đẳng thức được c/m

_________________________________________

`b) a^2 + b^2 + c^2 >= ab + bc + ca`

`<=> 2a^2 + 2b^2 + 2c^2 >= 2ab + 2bc + 2ca`

`<=> ( a^2 - 2ab + b^2 ) + ( b^2 - 2bc + c^2 ) + ( c^2 - 2ca + a^2 ) >= 0`

`<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 >= 0` (Luôn đúng `AA a,b,c`)

         `=>` Đẳng thức được c/m

7 tháng 8 2017

Bài 3:

Áp dụng bất đẳng thức AM - GM có:
\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge2\sqrt{x.\dfrac{1}{x}}+2\sqrt{y.\dfrac{1}{y}}+2\sqrt{z.\dfrac{1}{z}}\)

\(=2+2+2=6\)

Dấu " = " khi x = y = z = 1

Vậy...

7 tháng 8 2017

3. Với x,y,z>0 áp dụng BĐT Cauchy ta có

\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)

\(=\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)+\left(z+\dfrac{1}{z}\right)\)

\(\ge2\sqrt{x.\dfrac{1}{x}}+2\sqrt{y.\dfrac{1}{y}}+2\sqrt{z.\dfrac{1}{z}}=2+2+2=6\)

Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{x}\\y=\dfrac{1}{y}\\z=\dfrac{1}{z}\end{matrix}\right.\Leftrightarrow x=y=z=1\)

1. Với a=b=c=0, ta thấy BĐT trên đúng

Với a,b,c>0 áp dụng BĐT Cauchy cho 3 số dương

\(a^3+a^3+b^3\ge3\sqrt[3]{a^3.a^3.b^3}=3\sqrt[3]{a^6b^3}=3a^2b\) (1)

\(b^3+b^3+c^3\ge3\sqrt[3]{b^3.b^3.c^3}=3\sqrt[3]{b^6c^3}=3b^2c\) (2)

\(c^3+c^3+a^3\ge3\sqrt[3]{c^3.c^3.a^3}=3\sqrt[3]{c^6a^3}=3c^2a\) (3)

Cộng (1), (2), (3) vế theo vế:

\(a^3+b^3+c^3\ge a^2b+b^2c+c^2a>\dfrac{a^2b+b^2c+c^2a}{3}\) (vì a,b,c>0)

Do đó BĐT trên đúng \(\forall a,b,c\ge0\)

11 tháng 9 2016

Ta có a+ b- a3 b - ab= (a - b)(a3 - b3)

= (a -b)2 (a2 + ab + b2)

= (a - b)2 [\(\frac{3b^2}{4}+\left(a+\frac{b}{2}\right)^2\)]\(\ge0\)

Ta lại có a4 + b4 \(\ge2a^2b^2\)

Từ đó => 2(a4 + b4\(\ge\)ab3 + a3 b + 2 a2 b2

11 tháng 10 2020

\(2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)\cdot\left(a^{ }^2+b^2\right)\ge2ab\cdot\frac{\left(a+b\right)^2}{2}=ab\cdot\left(a+b\right)^2=ab^3+2a^2b^2+a^3b\)