Hàm số y = log 2 4 x − 2 x + m có tập xác định là ℝ thì
A. m < 1 4
B. m > 0
C. m ≥ 1 4
D. m > 1 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
y = log ( x 2 - 2 m x + 4 )
Điều kiện xác định của hàm số trên
Để tập xác định của hàm số là ℝ thì
Vậy đáp án đúng là đáp án D.
Chọn D
Hàm số xác định với mọi thì luôn đúng với mọi
+) Ta có:
Xét hàm số
Từ bảng biến thiên ta thấy để
Kết hợp điều kiện
Kết luận: có 2019 giá trị của m thỏa mãn bài toán.
Chọn D
Hàm số y = log ( x 2 - 4 x - m + 1 ) có tập xác định là ℝ khi và chỉ khi
Đáp án A
Phương pháp:
Xét tính đúng sai của các đáp án dựa vào các kiến thức hàm số đồng biến, nghịch biến trên khoảng xác định.
Cách giải:
*2 sai vì với c 1 < c 2 bất kỳ nằm trong a ; b ta chưa thể so sánh được f c 1 và f c 2
*3 sai. Vì y' bằng 0 tại điểm đó thì chưa chắc đã đổi dấu qua điểm đó. VD hàm số y = x 3
*4 sai: Vì thiếu điều kiện tại f ' x = 0 hữu hạn điểm.VD hàm số y = 1999 có y ' = 0 ≥ 0 nhưng là hàm hằng.
Chú ý khi giải:
HS thường nhầm lẫn:
- Khẳng định số 4 vì không chú ý đến điều kiện bằng 0 tại hữu hạn điểm.
- Khẳng định số 3 vì không chú ý đến điều kiện đổi dấu qua nghiệm.
\(a,D=R\\ b,2x-3>0\\ \Rightarrow x>\dfrac{3}{2}\\ \Rightarrow D=(\dfrac{3}{2};+\infty)\\ c,-x^2+4>0\\ \Rightarrow x^2< 4\\ \Leftrightarrow-2< x< 2\\ \Rightarrow D=\left(-2;2\right)\)
Chọn C.
Phương pháp : Kiểm tra tính đúng sai của từng mệnh đề.
Cách giải :
Đáp án D
Hàm số có tập xác định là R <=> 4x – 2x + m > 0, ∀ x ∈ ℝ
⇔ m > 2 x - 4 x ∀ x ∈ ℝ
Đặt t = 2x > 0 => m > t – t2 ∀ t > 0
⇔ m > m a x t > 0 f t ⇔ m > 1 4 .
Đáp án B
Để ý thấy lời giải bài toán sai ở bước 3 do m có thể nhỏ hơn 0
Đáp án D
Hàm số có tập xác định là ℝ ⇔ 4 x − 2 x + m > 0 , ∀ x ∈ ℝ ⇔ m > 2 x − 4 x ∀ x ∈ ℝ
Đặt t = 2 x > 0 ⇒ m > t − t 2 ∀ t > 0 ⇔ m > max t > 0 f t ⇔ m > 1 4