a+b =11 c+b=-5 c+a=2
tim a b c thuocZ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.khang dinh A,B,D dung
2,x-(1-x)=5+(-1+x)
x-1+x=5-1+x
2x-1=4+x
2x-x=4+1
x=5
Vay x=5
co bai kho hoi mik nhe
Ta có: $\sqrt[]{ab+2c}=\sqrt[]{ab+(a+b+c)c}=\sqrt[]{ab+ac+bc+c^2}=\sqrt[]{(c+a)(c+b)}$ (do $a+b+c=2$)
Nên $\dfrac{ab}{\sqrt[]{ab+2c}}=\dfrac{ab}{\sqrt[]{(c+a).(c+b)}}=ab.\sqrt[]{\dfrac{1}{a+c}.\dfrac{1}{b+c}}$
Áp dụng bất đẳng thức Cauchy cho $\dfrac{1}{a+c};\dfrac{1}{b+c}>0$ có:
$\sqrt[]{\dfrac{1}{a+c}.\dfrac{1}{b+c}} \leq \dfrac{1}{2}.(\dfrac{1}{a+c}+\dfrac{1}{b+c})$
Nên $\dfrac{ab}{\sqrt[]{ab+2c}} \leq \dfrac{1}{2}.ab.(\dfrac{1}{a+c}+\dfrac{1}{b+c})= \dfrac{1}{2}.(\dfrac{ab}{a+c}+\dfrac{ab}{b+c})$
Tương tự ta có: $\dfrac{bc}{\sqrt[]{bc+2a}} \leq \dfrac{1}{2}.(\dfrac{bc}{a+b}+\dfrac{bc}{a+c})$
$\dfrac{ca}{\sqrt[]{ca+2b}} \leq \dfrac{1}{2}.(\dfrac{ca}{b+a}+\dfrac{ca}{b+c})$
Nên $Q \leq \dfrac{1}{2}.(\dfrac{ab}{a+c}+\dfrac{ab}{b+c})+\dfrac{1}{2}.(\dfrac{bc}{a+b}+\dfrac{bc}{a+c})+ \dfrac{1}{2}.(\dfrac{ca}{b+a}+\dfrac{ca}{b+c})=\dfrac{1}{2}(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{bc}{a+b}+\dfrac{bc}{a+c}+\dfrac{ca}{b+a}+\dfrac{ca}{b+c})=\dfrac{1}{2}.(\dfrac{b(a+c)}{a+c}+\dfrac{a(b+c)}{b+c}+\dfrac{c(a+b)}{a+b}=\dfrac{1}{2}.(a+b+c)=1$ (do $a+b+c=2$)
Dấu $=$ xảy ra khi $a=b=c=\dfrac{2}{3}$
Bài 1:
a: \(\dfrac{x}{25}=\dfrac{-4}{-x}=\dfrac{4}{x}\)
\(\Leftrightarrow x^2=100\)
=>x=10 hoặc x=-10
b: \(\dfrac{x}{10}=\dfrac{11}{x+1}\)
\(\Leftrightarrow x^2+x-110=0\)
=>(x+11)(x-10)=0
=>x=10 hoặc x=-11
a) |x| + |-5| = |-37|
<=> |x| + 5 = 37
<=> |x| = 37 - 5 = 32
=> x \(\in\) {32 ; -32}
b)|-6| . |x| = |54|
<=> 6 . |x| = 54
|x| = 54 : 6 = 9
=> x \(\in\){9;-9}
a (a+b+c) + (a-b+c) - (b+c-a) - (a-b-c)
=a+b+c+a-b+c-b-c+a-a+b+c
= (a+a+a-a) + (b-b+b-b) + (c+c+c-c)
= a x 2 + 0 + c x 2
= 2 x (a + c)
\(\left(a+b-c\right)+\left(a-b+c\right)-\left(a-b-c\right)\)
\(=a+b-c+a-b+c-a+b+c\)
\(=\left(a+a-a\right)+\left(b-b+b\right)+\left(c-c+c\right)\)
\(=a+b+c\)
\(x-\left(+5\right)-\left[\left(x+11\right)-\left(x-11\right)\right]\)
\(=x-5-\left[x+11-x+11\right]\)
\(=x-5-\left[x-x+11+11\right]\)
\(=x-5-22\)
\(=x-27\)
\(a-\left\{\left(a-5\right)-\left[\left(a+9\right)-\left(-a+1\right)\right]\right\}\)
\(=a-\left\{a-5-\left[a+9+a-1\right]\right\}\)
\(=a-\left\{a-5-\left[a+a+9-1\right]\right\}\)
\(=a-\left\{a-5-\left[2a+8\right]\right\}\)
\(=a-\left\{a-5-2a-8\right\}\)
\(=a-a+5+2a+8\)
\(=2a+13=2\left(a+6\right)+1\)
a: A={-4;-3;-2;-1;0;1;2;3;4}
b: B={10;11;12;...;18;19;20}
Ta có:
(a+b)+(c+b)+(c+a)=11+(-5)+2
,<=> 2a+2b+2c=8
<=> 2(a+b+c)=8
<=> a+b+c=4
thay c+b=-5,ta được:
a-5=4
<=>a=9
Thay a=9 ta được:
c+9=2
<=>c=-7
thay c=-7 ta được:
-7+b=-5
<=>b=2
Vậy a=9;b=2;c=-7(thỏa mãn a,b,c\(\in Z\))
a + b = 11 ; c + b = -5 => (a + b) - (c + b) = 11 - (-5) => a + b - c - b = 16
=> a - c = 16 và a + c = 2
=> (a - c) + (a + c) = 16 + 2
=> a - c + a + c = 18
=> 2a = 18
=> a = 9
=> a + b = 11 => b = 11 - a = 11 - 9 = 2
=> c + a = 2 => c = 2 - a = 2 - 9 = -7