K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2017

Đáp án D

Hàm số xác định với mọi  x ∈ ℝ .

Em có:  lim x → 0 + f x = lim x → 0 + x 2 + 1 = 1 lim x → 0 − f x = lim x → 0 − x + a = a  và f(0) = 1.

Vậy: nếu a = 1 thì  lim x → 0 + f x = lim x → 0 − f x = f 0 = 1 ⇒ hàm số liên tục tại  x 0 = 0 .

        nếu  a ≠ 1  thì  lim x → 0 + f x ≠ lim x → 0 − f x ⇒ hàm số gián đoạn tại  x 0 = 0 .

22 tháng 10 2021

a: TXĐ: D=R

b: \(f\left(-1\right)=\dfrac{2}{-1-1}=\dfrac{2}{-2}=-1\)

\(f\left(0\right)=\sqrt{0+1}=1\)

\(f\left(1\right)=\sqrt{1+1}=\sqrt{2}\)

\(f\left(2\right)=\sqrt{3}\)

6 tháng 1 2016

Ta có: x+1 khi x lớn hơn hoặc bằng 0

          -x+1 khi x bé hơn 0

mà đề hỏi f(2) <=> 2>0

vậy ta áp dụng: f(2)=2+1=3

 

22 tháng 4 2016

ai làm có thưởng 2điem

20 tháng 7 2017

 Đáp án B

Ghi nhớ:

Để xét tính liên tục của hàm số tại ta cần phải nhớ.

1)Cho hàm số xác định trên khoảng

Hàm số được gọi là liên tục tại nếu

2)Định lý về giới hạn một bên

6 tháng 3 2017

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\), \(f\left( x \right) = \frac{{{x^2} - 2x}}{x}\) là hàm phân thức hữu tỉ nên liên tục trên từng khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\).

Ta có: \(f\left( 0 \right) = a\)

\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2} - 2x}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{x\left( {x - 2} \right)}}{x} = \mathop {\lim }\limits_{x \to 0} \left( {x - 2} \right) = 0 - 2 =  - 2\)

Để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) thì hàm số \(y = f\left( x \right)\) phải liên tục tại điểm \({x_0} = 0\).  Khi đó:

\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right) \Leftrightarrow a =  - 2\).

Vậy với \(a =  - 2\) thì hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).

a: loading...

 

b: \(f\left(2\right)=\dfrac{1}{2}\cdot2=1\)

\(f\left(1\right)=\dfrac{1}{2}\cdot1=\dfrac{1}{2}\)

\(f\left(-2\right)=\dfrac{1}{2}\cdot\left(-2\right)=-1\)

\(f\left(-1\right)=\dfrac{1}{2}\cdot\left(-1\right)=-\dfrac{1}{2}\)

\(f\left(0\right)=\dfrac{1}{2}\cdot0=0\)

c: f(x)=2

=>\(\dfrac{1}{2}x=2\)

=>x=2*2=4

f(x)=1

=>\(\dfrac{1}{2}x=1\)

=>\(x=1:\dfrac{1}{2}=2\)

f(x)=-1

=>\(\dfrac{1}{2}x=-1\)

=>\(x=-1\cdot2=-2\)

d: \(f\left(-1\right)=\dfrac{1}{2}\cdot\left(-1\right)=-\dfrac{1}{2}\ne\dfrac{1}{2}=y_A\)

=>A(-1;1/2) không thuộc đồ thị hàm số y=1/2x

\(f\left(-1\right)=\dfrac{1}{2}\cdot\left(-1\right)=-\dfrac{1}{2}=y_B\)

=>\(B\left(-1;-\dfrac{1}{2}\right)\) thuộc đồ thị hàm số y=1/2x

8 tháng 2 2018

1 tháng 2 2018

Đáp án C

18 tháng 4 2021

Để hàm số có đạo hàm tại x=0 phải thỏa mãn 2 điều kiện, đó là hàm số liên tục tại x=0 và có đạo hàm bên trái bằng đạo hàm bên phải

Để hàm số liên tục tại x=0 \(\Leftrightarrow\lim\limits_{x\rightarrow0^+}=\lim\limits_{x\rightarrow0^-}=f\left(0\right)\Leftrightarrow2=2\left(tm\right)\)

\(f'\left(0^+\right)=\lim\limits_{x\rightarrow0^+}\dfrac{f\left(x\right)-f\left(0\right)}{x-0}=\lim\limits_{x\rightarrow0^+}\dfrac{mx^2+2x+2-2}{x}=\lim\limits_{x\rightarrow0^+}\dfrac{x\left(mx+2\right)}{x}=2\)

\(f'\left(0^-\right)=\lim\limits_{x\rightarrow0^-}\dfrac{f\left(x\right)-f\left(0\right)}{x-0}=\lim\limits_{x\rightarrow0^-}\dfrac{nx+2-2}{x}=n\)

\(\Rightarrow\left\{{}\begin{matrix}m\in R\\n=2\end{matrix}\right.\)

\(f\left(0^+\right)=f\left(0^-\right)\Leftrightarrow n=2\)