CMR A=5 +5 mũ 2 +5 mũ 3+ 5 mũ 4 +...+ 5 mũ 12 chia hết cho 30 và 31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(5+5^2+5^3+....+5^{12}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+.......+\left(5^{11}+5^{12}\right)\)
\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+........+5^{10}\left(5+5^2\right)\)
\(=\left(5+5^2\right).\left(1+5^2+.......+5^{10}\right)\)
\(=30.\left(1+5^2+......+5^{10}\right)⋮30\)(1)
Ta lại có: \(5+5^2+5^3+......+5^{12}\)
\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+.......+\left(5^{10}+5^{11}+5^{12}\right)\)
\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+........+5^{10}\left(1+5+5^2\right)\)
\(=5.31+5^4.31+......+5^{10}.31\)
\(=31\left(5+5^4+......+5^{10}\right)⋮31\)(2)
Từ (1) và (2) \(\Rightarrowđpcm\)
C=(5+52)+(53+54)+.......+(511+512)
=30+52.(51+52)+.....+510.(51+52)
=30.1+52.30+.....+510.30
=30.(1+52+.........+510) chia hết cho 30
chắc là đúng ahihihi
\(A=5+5^2+...+5^{30}\)
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{29}+5^{30}\right)\)
\(A=\left(5+25\right)+5\cdot\left(5+25\right)+...+5^{28}\cdot\left(5+25\right)\)
\(A=30+5\cdot30+...+5^{28}\cdot30\)
\(A=30\cdot\left(1+5+...+5^{28}\right)\)
Vậy A chia hết cho 30
\(A=5+5^2+....+5^{30}\)
\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{28}+5^{29}+5^{30}\right)\)
\(A=5\cdot\left(1+5+25\right)+5^4\cdot\left(1+5+25\right)+...+5^{28}\cdot\left(1+5+25\right)\)
\(A=5\cdot31+5^4\cdot31+...+5^{28}\cdot31\)
\(A=31\cdot\left(5+5^4+...+5^{28}\right)\)
Vậy A chia hết cho 31
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)
Các ý dưới bạn làm tương tự nhé.
câu a nhóm 4 số lại(mũ liên tiếp)
câu b nhóm 4 số lại(mũ liên tiếp)
A= (5+52) + (53 + 54) +..+ (511 + 512)
A = 30.1 + 52.30 +.....+ 510.30
A = 30.(1+52+510)
Vậy chia hết cho 30
De CM chia het cho 31 nhom 3 so .