Cho tam giác ABC. Gọi M là điểm trên cạnh BC sao cho MB = 4MC. Khi đó biểu diễn A M → theo A B → và A C → là:
A. A M → = 4 5 A B → - 1 5 A C →
B. A M → = 4 5 A B → + A C →
C. A M → = 4 5 A B → + 1 5 A C →
D. A M → = 4 A B → + A C →
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có M B → = 1 3 M C → ⇔ 3 M B → = M C → ⇔ 3 B M → = C M →
A M → = A B → + B M → ⇒ 3 A M → = 3 A B → + 3 B M → ( 1 ) A M → = A C → + C M → ( 2 )
Lấy (1) trừ (2) ta được :
2 A M → = 3 A B → + 3 B M → − A C → + C M → = 3 A B → − A C → + ( 3 B M → − C M → ) = 3 A B → − A C → + 0 → = 3 A B → − A C → ⇒ A M → = 3 2 A B → − 1 2 A C → = 3 2 u → − 1 2 v →
Đáp án A
A, c/m :tgABC=tgCDA
Xét 2tg:ABC va CDA
Co : AC : canh chunh
BM=MD (gt)
BF=ED (gt)
=>tgABC=tgCDA(ccc)
b,C/M AF _|_ BC
Có: tgABC=tgCDA (cmt)(ccc)
Ma AF//CE (Vi : vuong goc tai F va E )
Va:A1=C2(slt)
Va:A2=C1(slt)
=> AF//CE
vỚI : AD//BC
Vì:ED=BF(gt)
E=F(vuog goc)
=> AD//BC
Vậy AF _|_ BC (Vi:CE_|_ AD)
C, KO BT LAM **** NHE
a, tu ve hinh :
tamgiac ABC can tai A => AB = AC va goc ABC = goc ACB (gn)
goc AIC = goc AIB = 90 do AI | BC (gt)
=> tamgiac AIC = tamgiac AIB (ch - gn)
=> IB = IC (dn)
b, dung PY-TA-GO
c, AE = AF (gt) => tamgiac AFE can tai E (dn)
=> goc AFE = (180 - goc BAC) : 2 (tc)
tamgiac ABC can tai A (gt) => goc ACB = (180 - goc BAC) : 2 (tc)
=> goc AFE = goc ACB ma 2 goc nay dong vi
=> EF // BC (dh)
vay_
Dùng kết quả: Nếu B, C, M thẳng hàng và A M → = x A B → + y A C → thì x + y = 1 để loại các phương án A, B, D.
Đáp án C