cho M=|3x-2|+4x+1
a; rut gon M
b;voi gia tri nao cua x thi M =18
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a, M(x) = 2x^3 + x^2 + 5 - 3x +3x^2 - 2x^3 - 4x^2 +1`
`M(x)= (2x^3 - 2x^3)+(x^2+3x^2)-3x+(5+1) `
`M(x)= 4x^2-3x+6`
`b,` giá trị của `M(x)` tại `x=0`
`-> M(0)=2*0^3 + 0^2 + 5 - 3*0 +3*0^2 - 2*0^3 - 4*0^2 +1`
`M(0)= 0+0+5-0+0+0-0-0+1 = 5+1=6`
Giá trị của `M(x)` tại `x=1`
`-> M(1)=2*1^3 + 1^2 + 5 - 3*1 +3*1^2 - 2*1^3 - 4*1^2 +1`
`M(1)=2+1+5-3+3-2-4+1 = (2-2)+(1+1)+5-(3-3)-4=2+5-4=7-4=3`
`c,` Giá trị của `P(x)` là cái gì bạn nhỉ?
Lời giải:
1.
$3x^2=2x-1$
$\Leftrightarrow 3x^2-2x+1=0$
$\Leftrightarrow 2x^2+(x-1)^2=0$
$\Rightarrow x^2=(x-1)^2=0$ (vô lý)
Vậy không tồn tại $x$, kéo theo không tồn tại $A$
2.
$4x^2=3x+1$
$\Leftrightarrow 4x^2-3x-1=0$
$\Leftrightarrow (x-1)(4x+1)=0$
$\Rightarrow x=1$ hoặc $x=-\frac{1}{4}$
Nếu $x=1$ thì $A=4x^2=4$
Nếu $x=\frac{-1}{4}$ thì $A=4(\frac{-1}{4})^2=\frac{1}{4}$
a: P(x)=x^3+x^2+x+2
Q(x)=-x^3+x^2-x+1
b: M(x)=P(x)+Q(x)
=x^3+x^2+x+2-x^3+x^2-x+1
=2x^2+3
N(x)=x^3+x^2+x+2+x^3-x^2+x-1
=2x^3+2x+1
c: M(x)=2x^2+3>=3>0 với mọi x
=>M(x) ko có nghiệm
a: Khi x=2/3 thì \(A=\dfrac{\dfrac{2}{3}-2}{\dfrac{2}{3}}=\dfrac{-4}{3}\cdot\dfrac{3}{2}=-2\)
b: \(B=\dfrac{4x}{x+1}-\dfrac{x}{x-1}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{4x^2-4x-x^2-x+2x}{\left(x-1\right)\left(x+1\right)}=\dfrac{3x^2-3x}{\left(x-1\right)\left(x+1\right)}=\dfrac{3x}{x+1}\)
a, \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\\ =x^3+x^2+x+2\)
\(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\\ =-x^3+x^2-x+1\)
b) \(M\left(x\right)=x^3+x^2+x+2-x^3+x^2-x+1\\ =2x^2+3\)
\(N\left(x\right)=x^3+x^2+x+2+x^3-x^2+x-1\\ =2x^3+2x+1\)
c, Ta thấy \(2x^2\ge0,3>0\Rightarrow M\left(x\right)>0\)
\(\Rightarrow M\left(x\right)\) không có nghiệm
a: Ta có: \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)
\(=x^3+x^2+x+2\)
Ta có: \(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\)
\(=-x^3-4x^2-x+1\)
b: Ta có: M(x)=P(x)+Q(x)
\(=x^3+x^2+x+2-x^3-4x^2-x+1\)
\(=-3x^2+3\)
Ta có N(x)=P(x)-Q(x)
\(=x^3+x^2+x+2+x^3+4x^2+x-1\)
\(=2x^3+5x^2+2x+1\)
a: P(x)=x^3-x^2+x+2
Q(x)=-x^3+x^2-x+1
b: M(x)=P(x)+Q(x)=x^3-x^2+x+2-x^3+x^2-x+1=3
N(x)=P(x)-Q(x)
=x^3-x^2+x+2+x^3-x^2+x-1
=2x^3-2x^2+2x+1
c: M(x)=3
=>M(x) ko có nghiệm
a: \(Q\left(x\right)=\left(x^2+9x^2-5x^2-3x^2+2x^2\right)-4x-1=4x^2-4x-1\)
b: Bậc là 2
\(Q\left(-1\right)=4+4-1=7\)
\(Q\left(2\right)=4\cdot2^2-4\cdot2-1=16-8-1=7\)
`a)``P(x)=2x^3-2x+x^2+3x+2`
`=2x^3+x^2+x+2`
`Q(x)=4x^3-3x^2-3x+4x-3x^3+4x^2+1`
`=x^3+x^2+x+1`
`#Khói`
a: M(x)=-4x^4+x+1+x^2-x=-4x^4+x^2+1
b: M(x)=0
=>-4x^4+x^2+1=0
=>\(x=\pm\sqrt{\dfrac{1+\sqrt{17}}{8}}\)
a)Với 3x-2 > hoặc = 0 =>x> hoặc = 2/3
=>M=|3x-2|+4x+1=3x-2+4x+1=7x-1
Với 3x-2 <0 =>x<2/3
=>M=|3x-2|+4x+1=2-3x+4x+1=x+3
b)M=18
=>|3x-2|+4x+1=18
TH1:x> hoặc = 2/3
=>7x-1=18
=>7x=19
=>x=19/7 (nhận)
TH2: x<2/3
=>x+3=18
=>x=15 (loại)