Một hộp đựng 15 cái thẻ được đánh số từ 1 đến 15. Rút ngẫu nhiên ba thẻ, xác suất để tổng ba số ghi trên ba thẻ được rút chia hết cho 3 bằng
A. 25 91
B. 32 91
C. 31 91
D. 11 27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Số cách rút hai thẻ chẵn là C 10 2 . Số cách rút ra hai thẻ trong đó có một thẻ ghi số chia hết cho 4 còn thẻ kia ghi số lẻ là .
Vậy xác suất cần tìm là C 5 1 C 5 2
Đáp án A
Rút ngẫu nhiên 2 thẻ trong 9 thẻ có C 9 2 cách ⇒ n ( Ω ) = C 9 2
Gọi X là biến cố “hai thẻ rút được có tích 2 số ghi trên 2 thẻ là số lẻ”
Khi đó 2 thẻ rút ra đều phải đưuọc đánh số lẻ => có C 5 2 cách => n ( X ) = C 5 2 .
Vậy xác suất cần tính là P = n ( X ) n ( Ω ) = C 5 2 C 9 2 = 5 18 .
Đáp án A
Rút ngẫu nhiên 2 thẻ trong 9 thẻ có C 9 2 cách ⇒ n Ω = C 9 2
Gọi X là biến cố “hai thẻ rút được có tích 2 số ghi trên 2 thẻ là số lẻ”
Khi đó 2 thẻ rút ra đều phải đưuọc đánh số lẻ ⇒ có C 5 2 cách ⇒ n X = C 5 2
Vậy xác suất cần tính là P = n X n Ω = C 5 2 C 9 2 = 5 18
Chọn C.
Gọi A: “tích 2 số ghi trên 2 thẻ được rút ra là số lẻ” = “cả hai số rút được đều là số lẻ”
Đáp án C
Rút ngẫu nhiên 3 thẻ trong 15 thẻ có C 15 3 cách => n ( Ω ) = C 15 3 = 455 .
Gọi X là biến cố “ tổng ba số ghi trên ba thẻ rút được". Khi đó 1 ≤ x , y ≤ 15 x + y + z ⋮ 3
Từ số 1 đến số 15 gồm 5 số chia hết cho 3 (N1), 5 số chia hết cho 3 dư 1 (N2) và 5 số chia hết cho 3 dư 2 (N3).
TH1: 2 số x, y, z thuộc cùng 1 loại N1, N2 hoặc N3 => có C 5 3 + C 5 3 + C 5 3 = 30 cách.
TH2: 3 số x, y, z mỗi số thuộc 1 loại => có C 5 1 + C 5 1 + C 5 1 = 125 cách.
=> Số kết quả thuận lợi cho biến cố X là n(X) = 30 + 125 = 155.
Vậy P = n ( X ) n ( Ω ) = 31 91 .