K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2018

Đáp án D

Số tam giác tạo thành khi chọn ngẫu nhiên 3 điểm là:  C 2 n 3

Số đường chéo đi qua tâm là n => số hình chữ nhật nhận 2 đường chéo đi qua tâm làm 2 đường chéo là:  C n 2 .

Số tam giác vuông được tạo thành là:  4 . C n 2 .

Ta có:  4 C n 2 C 2 n 3 = 1 5 ⇒ n = 1 8 .

4 tháng 1 2018

Đáp án D

Số tam giác tạo thành khi chọn ngẫu nhiên 3 điểm là: C 2 n 3  

Số đường chéo đi qua tâm là n ⇒ số hình chữ nhật nhận 2 đường chéo đi qua tâm làm 2 đường chéo là:  C n 2

Số tam giác vuông được tạo thành là  4 C n 2

Ta có:  4 C n 2 C 2 n 3 = 1 5 ⇒ n = 8.

27 tháng 12 2017

Gọi A là biến cố để 3 đỉnh tạo thành một tam giác vuông.

Ta có một đa giác đều 2n cạnh có n đường chéo đi qua tâm.

Ta lấy hai đường chéo thì tạo thành một hình chữ nhật.

Mỗi một hình chữ nhật sẽ có bốn tam giác vuông.

Vậy số tam giác vuông tạo thành từ đa giác đều 2n đỉnh là

4 tháng 4 2021

Dễ thấy, vì 2020 không chia hết cho 3 nên ta không thể tạo được 1 tam giác đều từ 3 đỉnh của đa giác đều 

Vậy xác xuất là 0 

2 tháng 3 2017

Đáp án C

Gọi  A  là biến cố: “Chọn được tam giác vuông”

Đa giác đều 4n đỉnh nội tiếp trong đường tròn tâm  O có 2n đường chéo qua tâm  O .

Mỗi tam giác vuông tạo bởi hai đỉnh nằm trên cùng một đường chéo qua tâm  O  và một đỉnh trong  4 n   - 2   đỉnh còn lại.

Suy ra số tam giác vuông được tạo thành là  C 2 n 1 . C 4 n - 2 1 .

6 tháng 9 2018

Số phần tử của tập X là  C 4 n 3

Gọi A là biến cố: “Chọn được tam giác vuông”

Đa giác đều 4n đỉnh nội tiếp trong đường tròn tâm O có 2n đường chéo qua tâm O.

Mỗi tam giác vuông tạo bởi hai đỉnh nằm trên cùng một đường chéo qua tâm O và một đỉnh trong 4n-2 đỉnh còn lại.

Suy ra số tam giác vuông được tạo thành là C 2 n 1 . C 4 n - 2 1 .

Từ giả thiết suy ra  P A = C 2 n 1 . C 4 n - 2 1 C 4 n 3 = 1 13 ⇒ n = 10

Đáp án C

4 tháng 4 2021

Số tam giác tạo ra từ 18 đỉnh là :

\(C^3_{18}=816\)

Với 1 đỉnh , ta kẻ đường kính từ đỉnh đó đi qua tâm đa giác đều, thì mỗi cặp điểm nằm đối xứng qua đường kính đó ghép với đỉnh kia tạo thành tam giác cân.

Mà có tất cả 8 cặp đó 

=> Với 1 đỉnh tạo được 8 tam giác cân

Với 18 đỉnh tạo được 144 tam giác cân.

Nhưng trong 18 đỉnh của đa giác đều , tạo được \(\dfrac{18}{3}=6\)

tam giác đều. Mà mỗi tam giác đều là cân tại 3 đỉnh

Vậy nên 6 tam giác đều đó được lặp lại 3 lần, thừa 2 lần.

Vậy số tam giác cân thực tế là : 144 - 6 x 2=132 

Xác suất là \(P=\dfrac{132}{816}=\dfrac{11}{68}\)

4 tháng 4 2021

em chưa học xác suất gì đâu nên mn check giùm em ạ

 

6 tháng 10 2019

19 tháng 9 2017

Đáp án C

Phương pháp: Số tam giác vuông bằng số  đường kính của đường tròn có đầu mút  là 2 đỉnh của đa giác (H)  nhân với (2n – 2) tức là số đỉnh còn lại của đa giác.

Cách giải: Số phần tử của không gian mẫu:  n Ω = C 2 n 3

Tam giác vuông được chọn là tam giác chứa một cạnh là đường kính của đường tròn tâm O.

Đa giác đều 2n đỉnh chứa 2n đường chéo là đường kính của đường tròn tâm O, mỗi đường kính tạo nên 2n – 2 tam giác vuông.

Do đó số tam giác vuông trong tập S là: 

Xác suất chọn một tam giác vuông trong tập S :