Một tổ có 6 học sinh nam và 9 học sinh nữ. Hỏi có bao nhiêu cách chọn 5 học sinh đi lao động trong đó có 2 học sinh nam ?
A. C 9 2 . C 6 3
B. C 9 2 + C 6 3
C. C 6 2 . C 9 3
D. A 6 2 . A 9 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Phương pháp:
+) Chọn 2 học sinh nam.
+) Chọn 3 học sinh nữ.
+) Sử dụng quy tắc nhân.
Cách giải:
Số cách chọn 2 học sinh nam C 6 2
Số cách chọn 3 học sinh nữ C 9 3
Vậy số cách chọn 5 học sinh đi lao động trong đó có 2 học sinh nam là C 6 2 . C 9 3
Đáp án B
Phải chọn 2 học sinh nam và 4 học sinh nữ ⇒ Theo quy tắc nhân số cách chọn là C 6 2 C 9 4 (Cách).
Đáp án B
Chọn 2 nam từ 6 nam có C 6 2 cách
Chọn 4 nữ từ 9 nữ có C 9 4 cách
Do đó có C 6 2 . C 9 4 cách thỏa mãn
Đáp án B
Chọn 2 nam từ 6 nam có C 6 2 cách
Chọn 4 nữ từ 9 nữ có C 9 4 cách
Do đó có C 6 2 . C 9 4 cách thỏa mãn
Đáp án B
chọn 6 học sinh đi lao động, trong đó 2 học sinh nam (và có 4 học sinh nữ) có C 6 2 . C 9 4 cách
Đáp án B
Phải chọn 2 học sinh nam và 4 học sinh nữ => Theo quy tắc nhân số cách chọn là C 6 2 . C 9 4 (cách).
a. Có \(C_6^3\) cách chọn 3 nam từ 6 nam
b.
Chọn 2 nam từ 6 nam và 3 nữ từ 9 nữ để lập tổ 1 có: \(C_6^2.C_9^3\) cách
Chọn 2 nam từ 4 nam còn lại và 3 nữ từ 6 nữ còn lại để lập tổ 2 có: \(C_4^2.C_6^3\) cách
Chọn 2 nam từ 2 nan còn lại và 3 nữ từ 3 nữ còn lại: \(C_2^2.C_3^3\) cách
\(\Rightarrow C_6^2.C_9^3+C_4^2.C_6^3+C_2^2.C_3^3\) cách thỏa mãn chia 3 tổ
Đáp án B.
Số cách chọn ngẫu nhiên một học sinh của tổ đó trực nhật là: 5+6=11 (cách).
Đáp án C.
Phương pháp:
+) Chọn 2 học sinh nam.
+) Chọn 3 học sinh nữ.
+) Sử dụng quy tắc nhân.
Cách giải:
Số cách chọn 2 học sinh nam C 6 2
Số cách chọn 3 học sinh nữ C 9 3
Vậy số cách chọn 5 học sinh đi lao động trong đó có 2 học sinh nam là C 6 2 . C 9 3 .