K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2018

Đáp án D

- Ta có:

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 2)

- Hàm có đạo hàm tại thì hàm liên tục tại x = 1 ⇔ a + b = 2 (1)

Đề thi Học kì 2 Toán 11 có đáp án (Đề 2)

- Hàm có đạo hàm tại Đề thi Học kì 2 Toán 11 có đáp án (Đề 2)

6 tháng 12 2016

trả lời nhanh giùm cái

xin m.n đó

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Parabol: \(y = a{(x - h)^2} + k\) với \(I(h;k) = \left( {\frac{5}{2}; - \frac{1}{4}} \right)\) là tọa độ đỉnh.

\( \Rightarrow y = a{\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4}\)

(P) đi qua \(A(1;2)\) nên \(2 = a{\left( {1 - \frac{5}{2}} \right)^2} - \frac{1}{4} \Rightarrow a = 1\)

\( \Rightarrow y = {\left( {x - \frac{5}{2}} \right)^2} - \frac{1}{4} \Leftrightarrow y = {x^2} - 5x + 6\)

Vậy parabol đó là \(y = {x^2} - 5x + 6\)

b) Vẽ parabol \(y = {x^2} - 5x + 6\)

+ Đỉnh \(I\left( {\frac{5}{2}; - \frac{1}{4}} \right)\)

+ Giao với Oy tại điểm \((0;6)\)

+ Giao với Ox tại điểm \((3;0)\) và \((2;0)\)

+ Trục đối xứng \(x = \frac{5}{2}\). Điểm đối xứng với điểm \((0;6)\) qua trục đối xứng có tọa độ \((5;6)\)

 

b) Hàm số đồng biến trên khoảng \(\left( { - \frac{5}{2}; + \infty } \right)\)

Hàm số nghịch biến trên khoảng \(\left( { - \infty ; - \frac{5}{2}} \right)\)

c) \(f(x) \ge 0 \Leftrightarrow {x^2} - 5x + 6 \ge 0\)

Cách 1: Quan sát đồ thị, ta thấy các điểm có\(y \ge 0\) ứng với hoành độ \(x \in ( - \infty ;2] \cup [3; + \infty )\)

Do đó tập nghiệm của BPT \(f(x) \ge 0\) là \(S = ( - \infty ;2] \cup [3; + \infty )\)

Cách 2:

\(\begin{array}{l} \Leftrightarrow {x^2} - 5x + 6 \ge 0\\ \Leftrightarrow (x - 2)(x - 3) \ge 0\end{array}\)

Do đó \(x - 2\) và \(x - 3\) cùng dấu. Mà \(x - 2 > x - 3\;\forall x \in \mathbb{R}\)

\( \Leftrightarrow \left[ \begin{array}{l}x - 3 \ge 0\\x - 2 \le 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge 3\\x \le 2\end{array} \right.\)

Tập nghiệm của BPT là \(S = ( - \infty ;2] \cup [3; + \infty )\)

Bài 1:a)Tính:\(A=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{2012\cdot2015}\)b)Tìm x thỏa mãn:|x+5|+|x-8|=13Bài 2:Cho a;b;c khác nhau và khác 0 thỏa mãn:\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)Tính \(A=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)Bài 3:1)Cho hàm số \(f\left(x\right)=\frac{4}{x};g\left(x\right)=x^2;h\left(x\right)=-2x^2-\frac{5}{x}\)a)Tính f(1);g(-1);h(-5)b)Tính k(x)=f(x)+g(x)+h(x).Tính x để k(x)=02)Vẽ đồ thị của hàm...
Đọc tiếp

Bài 1:

a)Tính:

\(A=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{2012\cdot2015}\)

b)Tìm x thỏa mãn:

|x+5|+|x-8|=13

Bài 2:Cho a;b;c khác nhau và khác 0 thỏa mãn:

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

Tính \(A=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)

Bài 3:

1)Cho hàm số \(f\left(x\right)=\frac{4}{x};g\left(x\right)=x^2;h\left(x\right)=-2x^2-\frac{5}{x}\)

a)Tính f(1);g(-1);h(-5)

b)Tính k(x)=f(x)+g(x)+h(x).Tính x để k(x)=0

2)Vẽ đồ thị của hàm số y=-2|x|

Bài 4:

1)Cho tam giác ABC vuông tại A có góc B=60 độ.AB=5cm.

a)Tính góc C và độ dài cạnh AC

b)Lấy H;K;I lần lượt là trung điểm BC;AC và AB.AH cắt BK tại G.Chứng minh C;G;I thẳng hàng và IH vuông góc với KH

2)Cho a;b;c là độ dài 3 cạnh của 1 tam giác;c là số đo cạnh huyền.Chứng minh:

\(a^{2n}+b^{2n}\le c^{2n}\left(n\inℕ^∗\right)\)

1
28 tháng 7 2018

Bài 1:

a) \(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{2012.2015}\)

\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2012}-\frac{1}{2015}\right)\)

\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{2015}\right)\)

\(A=\frac{1}{3}\cdot\frac{2013}{4030}=\frac{671}{4030}\)

Bài 2:

ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=\frac{b+c+a+c+a+b}{a+b+c}=\frac{2a+2b+2c}{a+b+c}\)

\(=\frac{2.\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}=2\)

\(\Rightarrow A=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=2+2+2=6\)

Bài 3:

a) f(1) = 4/1 = 4

=> f(1) = 4

g(-1) = (-1)^2 = 1

=> g(-1) = 1

h(-5) = -2.(-5)^2 - 5/(-5) = -2.25 + 1 = -50 + 1 = -49

=> h(-5) = -49

b) ta có: k(x)=f(x)+g(x)+h(x)

=> k(x) = 4/x + x^2 -2x^2 - 5/x

k(x) = - (5/x - 4/x) - (2x^2-x^2)

k(x) = -1/x - x

\(k_{\left(x\right)}=\frac{-1}{x}-\frac{x.x}{x}=\frac{-1-x^2}{x}\)

c) Để k(x) = 0

=> -1-x^2/x = 0 ( x khác 0)

=> -1-x^2 = 0

=> x^2 = -1

=> không tìm được x

Bài 4:

a) Xét tam giác ABC vuông tại A

có: góc B + góc C = 90 độ ( 2 góc phụ nhau)

thay số: 60 độ + góc C = 90 độ

góc C = 90 độ - 60 độ

góc C = 30 độ

=> AB = BC/2 ( cạnh đối diện với góc 30 độ)

thay số: 5 = BC/2

=> BC = 5.2

=> BC = 10 cm

Xét tam giác ABC vuông tại A

có:  AC^2 + AB^2 = BC^2 ( py - ta - go)

thay số: AC^2 + 5^2 = 10^2

         AC^2 + 25 = 100

AC^2 = 75

\(\Rightarrow AC=\sqrt{75}\) cm

26 tháng 2 2019

a) F(x) = 1 -  cos x 2 + π 4

d) K(x) = 2 1 - 1 1 + tan x 2

23 tháng 12 2023

Câu 5:

a: Khi m=3 thì \(f\left(x\right)=\left(2\cdot3+1\right)x-3=7x-3\)

\(f\left(-3\right)=7\cdot\left(-3\right)-3=-21-3=-24\)

\(f\left(0\right)=7\cdot0-3=-3\)

b: Thay x=2 và y=3 vào f(x)=(2m+1)x-3, ta được:

\(2\left(2m+1\right)-3=3\)

=>2(2m+1)=6

=>2m+1=3

=>2m=2

=>m=1

c: Thay m=1 vào hàm số, ta được:

\(y=\left(2\cdot1+1\right)x-3=3x-3\)

*Vẽ đồ thị

loading...

d: Để hàm số y=(2m+1)x-3 là hàm số bậc nhất thì \(2m+1\ne0\)

=>\(2m\ne-1\)

=>\(m\ne-\dfrac{1}{2}\)

e: Để đồ thị hàm số y=(2m+1)x-3 song song với đường thẳng y=5x+1 thì \(\left\{{}\begin{matrix}2m+1=5\\-3\ne1\end{matrix}\right.\)

=>2m+1=5

=>2m=4

=>m=2

22 tháng 6 2019

a) \(f\left(x\right)=5x^3-7x^2+2x+5\)

\(\Rightarrow f\left(1\right)=5.1^3-7.1^2+2.1+5\)

\(\Rightarrow f\left(1\right)=5.1-7.1+2+5\)

\(\Rightarrow f\left(1\right)=5-7+7\)

\(\Rightarrow f\left(1\right)=5\)

Vậy f(1) = 5.

\(g\left(x\right)=7x^3-7x^2+2x+5\)

\(\Rightarrow g\left(\frac{1}{2}\right)=7.\left(\frac{1}{2}\right)^3-7.\left(\frac{1}{2}\right)^2+2.\frac{1}{2}+5\)

\(\Leftrightarrow g\left(\frac{1}{2}\right)=7.\frac{1}{8}-7.\frac{1}{4}+1+5\)

\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{7}{8}-\frac{14}{8}+6\)

\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{-7}{8}+\frac{48}{8}\)

\(\Leftrightarrow g\left(\frac{1}{2}\right)=\frac{41}{8}\)

Vậy \(g\left(\frac{1}{2}\right)=\frac{41}{8}\)

22 tháng 6 2019

\(h\left(x\right)=2x^3+4x+1\)

\(\Rightarrow h\left(0\right)=2.0^3+4.0+1\)

\(\Rightarrow h\left(0\right)=0+0+1\)

\(\Rightarrow h\left(0\right)=1\)

Vậy \(h\left(0\right)=1\)

13 tháng 10 2017

Bài 6 : Tìm x thuộc Z để giá trị của biểu thức: x^3+2x-x^2+7 chia hết cho giá trị của biểu thức x^2 + 1

Ôn tập phép nhân và phép chia đa thức

13 tháng 10 2017

Bài 7: Tìm a, b để đa thức: x^3+ax+b chia hết cho x^2+2x-2

Ôn tập phép nhân và phép chia đa thức