Giả sử ∫ a b f x d x = 2 v à ∫ c b f x d x = 3 và a < b < c thì ∫ a c f x d x bằng bao nhiêu ?
A. 5
B. 1
C. -1
D. -5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk chỉ biết câu a thôi nha bạn, còn câu b để mk suy nghĩ đã nha...
a, Thay \(x=0\) vào f(x) và g(x):
=> \(f\left(0\right)=g\left(0\right)\)
Ta có: \(f\left(0\right)=a.0+b=b\)
\(g\left(0\right)=c.0+d=d\)
Mà \(f\left(0\right)=g\left(0\right)\) nên:
=> b = d (đpcm)
Thay \(x=1\) vào f(x) và g(x):
=> \(f\left(1\right)=g\left(1\right)\)
Lạt có: \(f\left(1\right)=a.1+b=a+b\)
\(g\left(1\right)=c.1+d=c+d\)
Mà \(f\left(1\right)=g\left(1\right)\) nên:
=> \(a+b=c+d\)
=> \(a=c\) (đpcm)
Chúc bạn học tốt! Nhớ tick theo dõi cho mk vs. Mk xin chân thành cảm ơn.
Bài 2:
a: A(x)=0
=>-4x+7=0
=>4x=7
=>x=7/4
b: B(x)=0
=>x(x+2)=0
=>x=0 hoặc x=-2
c: C(x)=0
=>1/2-căn x=0
=>căn x=1/2
=>x=1/4
d: D(x)=0
=>2x^2-5=0
=>x^2=5/2
=>\(x=\pm\dfrac{\sqrt{10}}{2}\)
- Vì F(x) và G(x) đều là nguyên hàm của f(x) nên tồn tại một hằng số C sao cho: F(x) = G(x) + C
- Khi đó F(b) – F(a) = G(b) + C – G(a) – C = G(b) – G(a).
Chọn C.