K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2019

4 tháng 2 2018

Đáp án C

1 tháng 4 2017

a) (3 + 2i)z – (4 + 7i) = 2 – 5i

⇔(3+2i)z=6+2i

<=> z = \(\dfrac{\text{6 + 2 i}}{\text{3 + 2 i}}\) = \(\dfrac{22}{13}\) - \(\dfrac{6}{13}\)i

b) (7 – 3i)z + (2 + 3i) = (5 – 4i)z

⇔(7−3i−5+4i)=−2−3i

⇔z= \(\dfrac{\text{− 2 − 3 i}}{\text{2 + i}}\) = \(\dfrac{-7}{5}\) - \(\dfrac{4}{5}i\)

c) z2 – 2z + 13 = 0

⇔ (z – 1)2 = -12 ⇔ z = 1 ± 2 √3 i

d) z4 – z2 – 6 = 0

⇔ (z2 – 3)(z2 + 2) = 0

⇔ z ∈ { √3, - √3, √2i, - √2i}







23 tháng 6 2017

Đáp án D

22 tháng 11 2018

Đáp án A.

Phương pháp:

Từ  z = z ¯ + 4 - 3 i  tìm ra quỹ tích điểm M(x;y) biểu diễn cho số phức z = x + yi

Gọi điểm M(x;y) là điểm biểu diễn cho số phức z và A(–1;1); B(2; –3) ta có: 

|z+1–i|+|z–2+3i| = MA + MB nhỏ nhất ó MA = MB

Cách giải: Gọi z = x + ui ta có:

Gọi điểm M(x;y) là điểm biểu diễn cho số phức z và A(–1;1); B(2; –3) ta có: 

|z+1–i|+|z–2+3i| = MA + MB nhỏ nhất.

Ta có:  dấu bằng xảy ra ó MA = MB => M thuộc trung trực của AB.

Gọi I là trung điểm của AB ta có  và A B → = 3 ; - 4

Phương trình đường trung trực của AB là

Để (MA + MB)min ó Tọa độ điểm M là nghiệm của hệ phương trình

25 tháng 8 2019

Đáp án C

20 tháng 1 2019

Giả sử M, N là điểm biểu diễn số phức z 1 ,   z 2  theo giả thiết suy ra M, N nằm trên đường tròn tâm I(5;3) bán kính r = 5 và MN là dây cung có độ dài bằng 8. Do đó trung điểm A của MN nằm trên đường tròn tâm I bán kính r' = 3.

Chọn C.

5 tháng 11 2019

Đáp án A.

Phương pháp:

Từ  tìm ra quỹ tích điểm M(x;y) biểu diễn cho số phức z=x+yi 

Gọi điểm M(x;y) là điểm biểu diễn cho số phức z và A(-1;1) ;B(2;-3) ta có: 

 nhỏ nhất

 

Cách giải: Gọi z=x+ui ta có:

Gọi điểm M(x;y) là điểm biểu diễn cho số phức z và A(-1;1) ;B(2;-3) ta có: 

 nhỏ nhất.

Ta có: 

Dấu bằng xảy ra 

 M thuộc trung trực của AB.

Gọi I là trung điểm của AB ta có  

Phương trình đường trung trực của AB là

 

Để  

Tọa độ điểm M là nghiệm của hệ phương trình 

9 tháng 5 2019

Đáp án A.