Cho hình chóp tứ giác SABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy, góc giữa SC và AD bằng 60 ° . Tính thể tích khối chóp SABCD bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Phương pháp: Sử dụng kiến thức về góc giữa hai đường thẳng: “ Góc giữa hai đường thẳng trong không gian là góc giữa hai đường thẳng (khác) tương ứng song song (hoặc trùng) với hai đường thẳng đó. Từ đó sử dụng lượng giác và định lý
Pytago để tinh đường cao SA
Cách giải:
Đáp án là A.
V S . A B C D = 4 a 3 3 = 1 3 .4 a 2 . S H
S C = S H 2 + H C 2 = S H 2 + B H 2 + B C 2 = a 6 .
ta có (SBD) giao với (ABCD) theo gt BD
BD vuông AC và BD vuong SA nên BD vuông (SAC)
góc đó là góc SOA
xét tam giác vuông SAO có tan 60*=SA/ÁO mà AC= a căn 2 nên ÁO=a căn 2 trên 2
=>SA=a căn 6 trên 2
xét VSABCD =SB.SC =1/2.1/2=1/4 (M,N là trung diểm)
VSAMND SM.SN
MÀ VSABCD=1/3.SA.SABCD=1/3.a căn 6/2.a^2=a^3 căn 6/6
=>VSAMND=1/4.VSABCD=a căn 6/24
Chọn A