K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2018

Ta có đạo hàm y’ = 3( x+ m) 2≥0  với mọi x.

=> Hàm số đồng biến trên đoạn [1; 2] nên hàm số đạt GTLN tại x = 2.

Khi đó; y( 2) = 8 khi và chỉ khi : ( 2+m) 3 = 8 hay m= 0

Chọn C.

27 tháng 2 2017

Đáp án là D

19 tháng 11 2019

Chọn D.

Xét hàm số hàm số liên tục trên R

Có 

đồng biến trên [2;4]

Nên 

Do đó 

Ta có 

Dấu bằng xảy ra 

Vậy  

19 tháng 5 2019

Chọn A

Kiến thức bổ sung: Dạng toán tìm GTLN, GTNN của hàm số y = |u(x)|  trên đoạn  [a;b]

Gọi M, m lần lượt là GTLN, GTNN của hàm số u(x) trên đoạn [a;b]

Đặt: 

Ta có: 

Suy ra: 

TH1: (loại)

(vì ko thỏa mãn giả thiết Aa = 12)

TH2: 

Từ giả thiết: Aa = 12 

TH3: 

Từ giả thiết: Aa = 12 

Kết hợp các trường hợp suy ra: S = {-4;4}

Vậy tổng các phần tử của bằng: (-4) + 4 = 0. 

17 tháng 6 2018

28 tháng 11 2019

Vì hàm số đã cho là hàm bậc nhất trên bậc nhất nên hàm số đơn điệu trên từng khoảng xác định của hàm số.

9 tháng 10 2018
3 tháng 4 2017

Chọn B

Xét hàm số g(x) =  x 3 - 3 x + m trên  ℝ

Bảng biến thiên của hàm số g(x):

Đồ thị của hàm số y = |g(x)| thu được bằng cách giữ nguyên phần đồ thị phía trên trục hoành của (C): y = g(x), còn phần đồ thị phía dưới trục hoành của (C): y = g(x) thì lấy đối xứng qua trục hoành lên trên. Do đó, ta có biện luận sau đây:

Ta xét các trường hợp sau:

Khi đó:  nên 

Như vậy 
(loại)

Khi đó: , nên

Như vậy (thỏa mãn)

(loại)

do đó
(thỏa mãn)

do đó

(thỏa mãn)

Suy ra S = {-1;1}. Vậy chọn  B

12 tháng 6 2018