Gọi x 1 , x 2 là hai nghiệm của phương trình 4 x 2 - x + 2 x 2 - x + 1 = 3 . Tính x 1 - x 2
A. 3
B. 0
C. 2
D. 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=8>0\) nên phương trình luôn có 2 nghiệm.
Theo viet: x1 + x2 = 2; x1*x2 = -1
Phương trình cần tìm có 2 nghiệm là -x1 và -x2
S= - x1 - x2 = -(x1 + x2) = -2
P= (-x1)*(-x2) = x1*x2 = -1
Vậy phương trình cần tìm là: X2 - SX + P = X2 + 2X - 1
x2 - 2( m + 1 )x + 2m - 4 = 0
1. Δ = b2 - 4ac = [ -2( m + 1 ) ]2 - 4( 2m - 4 )
= 4( m + 1 )2 - 8m + 16
= 4( m2 + 2m + 1 ) - 8m + 16
= 4m2 + 8m + 4 - 8m + 16
= 4m2 + 20
Dễ nhận thấy Δ ≥ 20 > 0 ∀ m
hay phương trình luôn có nghiệm với mọi m ( đpcm )
2. Dù là nghiệm kép hay nghiệm phân biệt thì hai nghiệm của phương trình đều viết được dưới dạng
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\text{Δ}}}{2a}=\frac{2m+2+\sqrt{4m^2+20}}{2}\\x_2=\frac{-b-\sqrt{\text{Δ}}}{2a}=\frac{2m+2-\sqrt{4m^2+20}}{2}\end{cases}}\)
Khi đó \(x_1^2+x_2^2=\left(\frac{2m+2+\sqrt{4m^2+20}}{2}\right)^2+\left(\frac{2m+2-\sqrt{4m^2+20}}{2}\right)^2\)
\(=\left(\frac{2m+2+2\sqrt{m^2+5}}{2}\right)^2+\left(\frac{2m+2-2\sqrt{m^2+5}}{2}\right)^2\)( em đưa 2 ra ngoài căn chắc chị hiểu )
\(=\left(\frac{2\left(m+1+\sqrt{m^2+5}\right)}{2}\right)^2+\left(\frac{2\left(m+1-\sqrt{m^2+5}\right)}{2}\right)^2\)
\(=\left(m+1+\sqrt{m^2+5}\right)^2+\left(m+1-\sqrt{m^2+5}\right)^2\)
\(=\left[\left(m+1\right)+\sqrt{m^2+5}\right]^2+\left[\left(m+1\right)-\sqrt{m^2+5}\right]^2\)
\(=\left(m+1\right)^2+2\left(m+1\right)\sqrt{m^2+5}+m^2+5+\left(m+1\right)^2-2\left(m+1\right)\sqrt{m^2+5}+m^2+5\)
\(=2\left(m+1\right)^2+2m^2+10\)
\(=2\left(m^2+2m+1\right)+2m^2+10\)
\(=2m^2+4m+2+2m^2+10=4m^2+4m+12\)
3. Em mới lớp 8 nên chưa học Min Max mấy dạng này chị thông cảm :(((((((((
à xin phép em sửa một tí :))
1. ... = 4m2 + 20
Dễ nhận thấy Δ ≥ 20 > 0 ∀ m
hay phương trình luôn có hai nghiệm phân biệt với mọi m ( đpcm )
2. Vì phương trình luôn có hai nghiệm phân biệt nên hai nghiệm đó luôn viết được dưới dạng : ...
em quên nhìn cái " luôn có hai nghiệm phân biệt " sorry chị :(
ta có theo VI-et thì \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-4\end{cases}}\)
Nên \(A=x_1\left(1-x_2\right)+x_2\left(1-x_1\right)=\left(x_1+x_2\right)-2x_1x_2=2\left(m-1\right)-2\left(m-4\right)=6\)khonong phụ thuộc vào m
(mình chỉ gợi ý cách làm thôi nhé!)
Phần 1 tính delta Cm delta luôn >0
Phần 2 Xử dụng hệ thức Vi-et
Câu b bạn học công thức là làm được mà. Câu a thì dùng \(\Delta\)như bạn kia nói ý