chứng tỏ rằng : nếu a,b thuộc tập hợp Z và b khác 0 mà b là ước của a thì b cũng là ước của a
zải zùm nha mý pn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a, sai
b, đúng
Bài 2:
a, Ư(15) = {1;3;5;15}
Vì n + 1 là ước của 15 nên ta có:
n + 1 = 1 => n = 0
n + 1 = 3 => n = 2
n + 1 = 5 => n = 4
n + 1 = 15 => n = 14
Vậy...
b, Ư(12) = {1;2;3;4;6;12}
Vì n + 5 là ước của 12 nên ta có:
n + 5 = 1 => n = -4 (loại)
n + 5 = 2 => n = -3 (loại)
n + 5 = 3 => n = -2 (loại)
n + 5 = 4 => n = -1 (loại)
n + 5 = 6 => n = 1
n + 5 = 12 => n = 7
Vậy...
Bài 3:
Ta có: abba = 1000a + 100b + 10b + a
= (1000a + a) + (100b + 10b)
= (1000 + 1)a + (100 + 10)b
= 1001a + 110b
= 11.(91a + 10b)
Vì 11(91a + 10b) \(⋮\)11 nên 11 là ước của số có dạng abba
Xét hai trường hợp b nguyên dương và b nguyên âm.
_xét b nguyên dương. Vì a,b cùng dấu nên a nguyên dương. Ta có a/b> 0/b=0. Vậy a/b là số hữu tỉ dương.
_xét b nguyên âm
Ta có -b nguyên dương. Vì a,b cùng dấu nên a nguyên âm. Suy ra a nguyên dương. Do đó a/b= -a/-b> 0/-b = 0. Vậy a/b là số hưu tỉ dương
Đáp án cần chọn là: B
Với a,b∈Z và b≠0. Nếu có số nguyên q sao cho b=aq thì a là ước của b và b là bội của a