Cho hàm số y=ax3+bx2+cx+d có hai điểm cực trị x1, x2 thỏa mãn x 1 ∈ - 3 ; - 1 ; x 2 ∈ 0 ; 1 . Biết hàm số nghịch biến trên khoảng (x1, x2) và đồ thị hàm số cắt trục tung tại điểm có tung độ dương. Mệnh đề nào dưới đây là đúng?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Đồ thị cắt trục tung tại điểm có tung độ âm ⇒ y 0 = d < 0
Ta có y ' = 3 a x 2 + 3 b x + c , y ' = 0 ⇔ x 1 + x 2 = - 2 b 3 a x 1 . x 2 = c 3 a . Mà y ' > 0 , ∀ x ∈ x 1 , x 2 ⇒ a < 0
Mặt khác x 1 + x 2 > 0 x 1 . x 2 < 0 ⇒ - 2 b 3 a > 0 c 3 a < 0 ⇔ b > 0 c < 0 . Vậy a < 0 , b > 0 , c > 0 , d < 0 .
Chọn đáp án A.
Đồ thị hàm số cắt trục tung tại điểm có tung độ dương nên d > 0
y = a x 3 + b x 2 + c x + d ⇒ y ' = 3 a x 2 + 2 b x + c
Hai cực trị tại x 1 , x 2 nằm về hai phía của đường thẳng x = 3 khi x 1 < 3 < x 2
⇒ 3 a f 3 < 0 ⇔ 3 a 27 a + 6 b + c < 0 ⇔ a 6 b + c < - 27 a 2 ⇔ 6 b + c 3 a < - 9
Đáp án cần chọn là C