K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2017

27 tháng 11 2018

28 tháng 2 2017

Đáp án D

4 tháng 1 2020

18 tháng 10 2019

Đáp án C

Phương pháp: Phương pháp tọa độ hóa.

Cách giải:

Cách 1:

Gọi O là trung điểm của BC.

Tam giác ABC là tam giác cân, AB = AC = a,  B A C ^ = 120 0

Ta gắn hệ trục tọa độ như hình bên:

Trong đó, O(0;0;0); A(0; a 2 ;0); B' ( a 3 2 ;0;a); I( - a 3 2 ;0; a 2 )

Mặt phẳng (ABC) trùng với mặt phẳng (Oxy) và có VTPT là  n 1 → = ( 0 ; 0 ; 1 )

I B ' → = a 3 ; 0 ; a 2 ;  I A → = a 3 2 ; a 2 ; - a 2

Mặt phẳng (IB’A) có 1 VTPT  n 2 → = 2 3 ; 0 ; 1 ; 3 ; 1 ; - 1 = 1 ; 3 3 ; 2 3

Côsin góc giữa hai mặt phẳng (ABC) và (IB’A) :

cos((ABC);(AB'I)) = |cos( n 1 → ; n 2 → )| =

Cách 2:

Trong (ACC’A’) kéo dài AI cắt AC’tại D.

Trong (A’B’C’) kẻ A’H ⊥ B’D  ta có:

=> 

Ta dễ dàng chứng minh được C’ là trung điểm của AD’

=>

Xét tam giác A’B’D có

B'D = 

=>

Xét tam giác vuông AA'H có :

=>

25 tháng 6 2019

Chọn đáp án D.

13 tháng 3 2017

Đáp án C

NV
3 tháng 3 2022

\(2x\left(y-x\right)=a^2>0\Rightarrow y>x\)

Qua \(B_1\) kẻ đường thẳng song song BC cắt \(CC'\) tại D \(\Rightarrow DC_1=y-x\) và \(B_1D=BC=a\)

Áp dụng Pitago ta có:

\(AC_1^2=AC^2+AC_1^2=a^2+y^2\)

\(AB_1^2=AB^2+BB_1^2=a^2+x^2\)

\(B_1C_1^2=B_1D^2+DC_1^2=a^2+\left(y-x\right)^2\)

\(\Rightarrow AB_1^2+B_1C_1^2=2a^2+x^2+\left(y-x\right)^2=2a^2+2x^2+y^2-2xy\)

\(=2a^2+2x^2+y^2-\left(2x^2+a^2\right)=a^2+y^2=AC_1^2\)

\(\Rightarrow\Delta AB_1C_1\) vuông tại \(B_1\)  theo Pitago đảo.

b.

Do \(B_1\) là trung điểm BB' \(\Rightarrow x=\dfrac{BB'}{2}\), mà \(y=2x\Rightarrow y=BB'\Rightarrow C_1\) trùng C' 

Do \(CC',B_1B\) vuông góc mặt đáy \(\Rightarrow\) tam giác ABC là hình chiếu vuông góc của tam giác \(AB_1C_1\) lên (ABC)

Theo công thức diện tích hình chiếu:

\(S_{ABC}=S_{AB_1C_1}.cos\alpha\Rightarrow S_{AB_1C_1}=\dfrac{S_{ABC}}{cos\alpha}=\dfrac{a^2\sqrt{3}}{4cos\alpha}\)

Gọi D là trung điểm AC' (hay \(AC_1\)) và  E là trung điểm AC

\(\Rightarrow\) \(BEDB_1\) là hình chữ nhật \(\Rightarrow B_1D=BE=\dfrac{a\sqrt{3}}{2}\)

\(B_1C'=B_1A=\sqrt{a^2+\left(\dfrac{x}{2}\right)^2}\) nên tam giác \(AB_1C'\) cân tại \(B_1\Rightarrow B_1D\) đồng thời là đường cao

\(\Rightarrow S_{AB_1C_1}=\dfrac{1}{2}B_1D.AC'=\dfrac{a^2\sqrt{3}}{4cos\alpha}\Rightarrow AC'=\dfrac{a^2\sqrt{3}}{2cos\alpha.B_1D}=\dfrac{a}{cos\alpha}\)

\(\Rightarrow AA'=\sqrt{AC'^2-AC^2}=\sqrt{\dfrac{a^2}{cos^2\alpha}-a^2}=a.tan\alpha\)

NV
3 tháng 3 2022

undefined

21 tháng 4 2017

2 tháng 4 2019

Đáp án đúng : A