K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2017

Chọn C

Phương pháp:

Cách giải:

Hình chóp tam giác đều ABC có chiều cao a, cạnh bên 2a.

Gọi H là trọng tâm tam giác ABC => SH là đường cao hình chóp => SH = a

Gọi I là trung điểm BC

Do tam giác ABC đều

16 tháng 2 2017

15 tháng 9 2017

Đáp án C

12 tháng 6 2018

Chọn C

NV
21 tháng 8 2021

Gọi H là hình chiếu vuông góc của S lên đáy \(\Rightarrow\) H là tâm đường tròn ngoại tiếp tam giác ABC

Gọi M là trung điểm BC, do tam giác cân tại A \(\Rightarrow H\in AM\)

Kéo dài AM cắt đường tròn ngoại tiếp tam giác tại D \(\Rightarrow\widehat{ABD}\) là góc nội tiếp chắn nửa đường tròn

\(\Rightarrow\Delta ABD\) vuông tại B

\(BM=\dfrac{1}{2}BC=\dfrac{3a}{2}\)  \(\Rightarrow AM=\sqrt{AB^2-BM^2}=\dfrac{a\sqrt{7}}{2}\)

Áp dụng hệ thức lượng:

\(AB^2=AM.AD\Rightarrow AD=\dfrac{AB^2}{AM}=\dfrac{8a\sqrt{7}}{7}\)

\(\Rightarrow AH=\dfrac{AD}{2}=\dfrac{4a\sqrt{7}}{7}\)

\(\Rightarrow SH=\sqrt{SA^2-AH^2}=\dfrac{2a\sqrt{21}}{7}\)

\(V=\dfrac{1}{3}SH.\dfrac{1}{2}AM.BC=...\)

NV
21 tháng 8 2021

undefined

NV
21 tháng 8 2021

Gọi H là hình chiếu vuông góc của S lên đáy

\(\Rightarrow\widehat{SAH}=\widehat{SBH}=\widehat{SCH}=60^0\)

\(\Rightarrow AH=BH=CH=\dfrac{SH}{tan60^0}\Rightarrow H\) là tâm đường tròn ngoại tiếp tam giác đáy

\(\Rightarrow AH=R=\dfrac{AB.BC.AC}{4S_{ABC}}\)

\(\Rightarrow SH=AH.tan60^0=\dfrac{AB.BC.AC.\sqrt{3}}{4S_{ABC}}\)

\(V=\dfrac{1}{3}SH.S_{ABC}=\dfrac{1}{3}.\dfrac{AB.BC.CA.\sqrt{3}}{4S_{ABC}}.S_{ABC}=\dfrac{5a^3\sqrt{3}}{12}\)

6 tháng 2 2019

23 tháng 9 2017

2 tháng 7 2017

13 tháng 6 2017