Tìm x thuộc Z biết:
a/ x^2 - x = 0
b/ x^2 - 5x + 4 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow\left(x+3\right)\left(x+3-x+3\right)=0\Leftrightarrow x=-3\\ b,\Leftrightarrow x=0\left(x^2+4>0\right)\)
\(a,x^2+2.x.3+3^2-\left(x^2-3^2\right)=0\)
\(x^2+6x+9-x^2+9=0\)
\(6x+18=0\)
\(6x=-18\)
\(x=-3\)
Vậy x=-3
\(b,5x^3+20x=0\)
\(5x\left(x^2+4\right)=0\)
\(Th1:5x=0=>x=0\)
\(Th2:x^2+4=0\)
\(x^2=-4\)(vô lý)
Vậy x=0
Lời giải:
a. $x^2-100x=0$
$\Leftrightarrow x(x-100)=0$
$\Rightarrow x=0$ hoặc $x-100=0$
$\Leftrightarrow x=0$ hoặc $x=100$
b.
$x^2+5x+6=0$
$\Leftrightarrow (x^2+2x)+(3x+6)=0$
$\Leftrightarrow x(x+2)+3(x+2)=0$
$\Leftrightarrow (x+2)(x+3)=0$
$\Leftrightarrow x+2=0$ hoặc $x+3=0$
$\Leftrightarrow x=-2$ hoặc $x=-3$
a) \(\Rightarrow5x\left(x-200\right)-\left(x-200\right)=0\)
\(\Rightarrow\left(x-200\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=200\\x=\dfrac{1}{5}\end{matrix}\right.\)
b) \(\Rightarrow x\left(x^2-11\right)=0\)
\(\Rightarrow x\left(x-\sqrt{11}\right)\left(x+\sqrt{11}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{11}\\x=-\sqrt{11}\end{matrix}\right.\)
a) 5x(x-200)-(x-200)=0
(x-200)(5x-1)=0
Th1 : x-200=0
X=200
Th2 : 5x-1=0
5x=1
X=1/5
Vậy S={200;1/5}
a ,\(4x^2-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(2x-x+3\right)\left(2x+x-3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(3x-3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+3=0\\3x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\3x=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
Vậy
b,\(x^2-4+\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x+2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy ...
\(\Rightarrow\left(x+3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x+3=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)
\(2\left(x+3\right)+x\left(3+x\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)
a: =>2x^2=4
=>x^2=2
=>\(x=\pm\sqrt{2}\)
b: =>(x+1)^2-4=0
=>(x+1+2)(x+1-2)=0
=>(x+3)(x-1)=0
=>x=1 hoặc x=-3
c: =>(2x-1)^2-3^2=0
=>(2x-1-3)(2x-1+3)=0
=>(2x-4)(2x+2)=0
=>x=2 hoặc x=-1
d: x^2-x=0
=>x(x-1)=0
=>x=0 hoặc x=1
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
a)x2-x=0
x2-x=02-0
=>x=0
a)x(x-1)=0
=>x=0 hoặc x-1=0
=>x=0 hoặc x=1
b)x(x-5)=-4
=>x và x-5 thuộc Ư(-4)={1;2;4;-1;-2;-4}
Ta có bảng kết quả
Vậy x thuộc {1;4}