Cho x,y thỏa mẵn:\(x^2+5y^2-2xy+2y+2x+2=0\)
Tính giá trị biểu thức: \(H=\frac{x^2-7xy+52}{x-y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x2 +y2 +9+2xy-6x-6y)+(y2+4y+4)=0
(x+y-3)2+(y+2)2=0.vì (x+y-3)2>=0;(y+2)2>=0
suy ra x+y-3=0 và y+2=0
x=5;y=-2
thay x,y vào bt H ta đc H=1
x2 + 2y2 + 2xy - 6x - 2y + 13 = 0
<=> ( x2 + 2xy + y2 - 6x - 6y + 9 ) + ( y2 + 4y + 4 ) = 0
<=> [ ( x2 + 2xy + y2 ) - ( 6x + 6y ) + 9 ] + ( y + 2 )2 = 0
<=> [ ( x + y )2 - 2( x + y ).3 + 32 ] + ( y + 2 )2 = 0
<=> ( x + y - 3 )2 + ( y + 2 )2 = 0
Ta có : \(\hept{\begin{cases}\left(x+y-3\right)^2\\\left(y+2\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(x+y-3\right)^2+\left(y+2\right)^2\ge0\forall x,y\)
Dấu "=" xảy ra <=> x = 5 ; y = -2
Thế x = 5 ; y = -2 vào A ta được :
\(A=\frac{5^2-7\cdot5\cdot\left(-2\right)+52}{5-\left(-2\right)}=\frac{25+70+52}{7}=\frac{147}{7}=21\)
x2 + 2y2 + 2xy - 6x - 2y + 13 = 0
<=> ( x2 + 2xy + y2 - 6x - 6y + 9 ) + ( y2 + 4y + 4 ) = 0
<=> [ ( x2 + 2xy + y2 ) - ( 6x + 6y ) + 9 ] + ( y + 2 )2 = 0
<=> [ ( x + y )2 - 2( x + y ).3 + 32 ] + ( y + 2 )2 = 0
<=> ( x + y - 3 )2 + ( y + 2 )2 = 0
Ta có : \(\hept{\begin{cases}\left(x+y-3\right)^2\\\left(y+2\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(x+y-3\right)^2+\left(y+2\right)^2\ge0\forall x,y\)
Dấu "=" xảy ra <=> x = 5 ; y = -2
Thế x = 5 ; y = -2 vào A ta được :
\(A=\frac{5^2-7\cdot5\cdot\left(-2\right)+52}{5-\left(-2\right)}=\frac{25+70+52}{7}=\frac{147}{7}=21\)
kho....................wa..................troi.......................thi.....................ret.................lanh................wa..................tich............................ung.........................ho..............minh......................cho....................do....................lanh
Ta có: 5x2+5y2+8xy-2x+2y+2=0
=> 4x2+8xy+4y2+x2-2x+1+y2+2y+1=0
=> (2x+2y)2+(x-1)2+(y+1)2=0
=> {2x+2y=0 => x=-y
{x-1 = 0 => x=1
{y+1 =0 => y=-1
=> x=1, y=-1
Thay vào biểu thức M, ta có:
M=(1+-1)2015+(1-2)2016+(-1+1)2017=0+1+0=1 (đpcm)
Lời giải:
$\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:
$x=2k; y=3k$
Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.
$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$
\(5x^2+5y^2+8xy-2x+2y+2=0\)
=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)
=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
=>x=1 và y=-1
\(M=\left(1-1\right)^{2023}+\left(1-2\right)^{2024}+\left(-1+1\right)^{2025}=1\)
hikkkkkkkk làm sắp xong bấm lộn nút mất tiêu
x2+5y2-2xy+2y+2x+2=0
<=>(x2-2xy+y2)+(2x-2y)+1+(4y2+4y+1)=0
<=>(x-y)2+2.(x-y)+1+(2y+1)2=0
<=>(x-y+1)2+(2y+1)2=0
<=>x-y=-1 và y=-1/2
<=>x=-1-1/2=-3/2 và y=-1/2
Vậy: \(H=\frac{x^2-7xy+52}{x-y}=\frac{x^2-xy-6xy+52}{-1}=-\left[x^2-6xy+52\right]\)
còn lại bạn chỉ cần thay vào tính thui nha