Cho m < n, hãy so sánh: m + 2 và n + 2
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NQ
1
HP
24 tháng 1 2016
\(A=\frac{\left(2+2m\right).m}{2m}=\frac{2\left(1+m\right).m}{2m}=1+m\)
\(B=\frac{\left(2+2n\right).n}{2n}=\frac{2\left(1+n\right).n}{2n}=1+n\)
do A<B=>1+m<1+n=>m<n
24 tháng 1 2016
Ta có: A=\(\frac{\frac{\left(2m+2\right)\left[\frac{2m-2}{2}+1\right]}{2}}{m}=\frac{\frac{2\left(m+1\right)m}{2}}{m}=\frac{\left(m+1\right)}{m}\)=m+1
B= \(\frac{\frac{\left(2n+2\right)\left[\frac{2n-2}{2}+1\right]}{2}}{n}=\frac{\frac{2\left(n+1\right)n}{2}}{n}=\frac{\left(n+1\right)n}{n}\)=n+1
Mà A<B
=>m+1<n+1
=>m<n
NM
2
NN
27 tháng 4 2020
a) Vì \(a>b\)\(\Rightarrow2020a>2020b\)
\(\Rightarrow2020a-3>2020b-3\)
b) Vì \(50-2020m< 50-2020n\)\(\Rightarrow2020m>2020n\)
\(\Rightarrow m>n\)
Ta có: m < n ⇒ m + 2 < n + 2