K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

Ta có sinα + cosα > 0 và sinαcosα > 0. Do đó

     ( sin α   +   cos α ) 2   =   sin 2 α   +   cos 2 α   +   2 sin α cos α  

    = 1 + 2sinαcosα > 1

    Từ đó suy ra: sinα + cosα > 1

18 tháng 8 2018

26 tháng 1 2018

12 tháng 8 2016

A B C c b a

Xét tam giác vuông có ba cạnh AB, AC , BC lần lượt là c,b,a 

a) Ta có : \(tan\alpha=\frac{b}{c}=\frac{\frac{b}{a}}{\frac{c}{a}}=\frac{sin\alpha}{cos\alpha}\)

\(cotg\alpha=\frac{c}{b}=\frac{\frac{c}{a}}{\frac{b}{a}}=\frac{cos\alpha}{sin\alpha}\)

\(tan\alpha.cotg\alpha=\frac{b}{c}.\frac{c}{b}=1\)

b) Ta có : \(sin^2\alpha=\frac{b^2}{a^2},cos^2\alpha=\frac{c^2}{a^2}\Rightarrow sin^2\alpha+cos^2\alpha=\frac{b^2+c^2}{a^2}=\frac{a^2}{a^2}=1\)

a: (sina+cosa)^2

=sin^2a+cos^2a+2*sina*cosa

=1+sin2a

b: \(cos^4a-sin^4a=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)\)

\(=cos^2a-sin^2a=cos2a\)

18 tháng 3 2017

Chọn A.

Ta có : P = sin3 α + cos3 α = ( sinα + cosα) 3 - 3sin α.cosα(sinα + cosα)

Ta có (sin α + cos α) 2 = sin2α + cos2α +  2sinα.cosα = 1 + 24/25 = 49/25.

Vì sin α + cosα > 0  nên ta chọn sinα + cosα = 7/5.

Thay  vào P ta được 

22 tháng 4 2018

Chọn D.

Ta có ( sinα - cosα) 2 + (sinα + cosα) 2 = 2( sin2α +  cos2α)  = 2.

Suy ra (sinα - cosα) 2 = 2 - ( sinα + cos α) 2 = 2 - 5/4 = 3/4.

Do  suy ra sinα < cosα  nên sinα - cosα <  0.

Vậy