Góc nội tiếp chắn nửa đường tròn là góc
A. Nhọn
B. Tù
C. Vuông
D. Không xác định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(A) Sai. Góc nội tiếp là góc có đỉnh nằm trên đường tròn, hai cạnh chứa hai dây cung của đường tròn đó.
(B) Sai. Trong một đường tròn, hai góc nội tiếp bằng nhau thì cùng chắn một cung hoặc chắn hai cung bằng nhau.
(C) Sai. Trong một đường tròn, hai góc nội tiếp chắn hai cung bằng nhau thì bằng nhau.
(D) Sai. Trong một đường tròn, số đo của góc nội tiếp bằng một nửa số đo của góc ở tâm cùng chắn một cung.
(E) Đúng. Trong một đường tròn, góc nội tiếp có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung.
Ok
Hình bạn tự vẽ
Câu a
Tứ giác DKIH có
Góc IKD+ Góc IHD = 90°+90°= 180°
=> Tứ gác DKIH nội tiếp
Gọi A là trung điểm DI
∆ IHD vuông có HA là trung tuyến
∆IKD vuông có KA là trung tuyến
=> HA=KA=IA=DA
=> I là tâm đường tròn
Câu b
Tứ giác DKIH nội tiếp
=> góc KHD = Góc DIK
Ta có góc EDI + góc DEI = 90°
Lại có Góc KHI+góc KHD = 90°
Mà góc KDI = Góc KHI (Tứ giác DKIH nội tiếp; cùng chắn cung KI)
=> Cái đề
a) Vì \(OC\perp AB\Rightarrow\widehat{O}=90^o\)
Xét \(\left(O;\frac{AB}{2}\right)\):
\(\Delta ABM\)nt nửa đường tròn, có AB là đường kính
\(\Rightarrow\Delta ABM\)vuông tại M\(\Rightarrow\widehat{AMB}=90^o\)
Xét \(\Delta ANO\)và \(\Delta ABM\)có:
\(\widehat{BAM}\)chung
\(\widehat{AON}=\widehat{AMB}=90^o\)
\(\Rightarrow\Delta ANO\infty\Delta ABM\left(gg\right)\)\(\Rightarrow\frac{AN}{AB}=\frac{AO}{AM}\Rightarrow AN.AM=AO.AB=OA.2OA=2OA^2\)
Vì OA là bán kính của nửa đường tròn nên tích AN.AM ko đổi
b) Xét tg MNOB có \(\widehat{NMB}+\widehat{BON}=90^o+90^o=180^o\).Mà 2 góc ở vị trí đối nhau
\(\Rightarrow Tg\)MNOB là tg nt
Vì \(CD\perp AM\Rightarrow\widehat{D}=90^o\)
Xét tg AODC có: \(\widehat{AOC}=\widehat{CDA}=90^o\).Mà O và D là 2 đỉnh kề nhau nhìn cạnh AC dưới 1gocs 90 độ
\(\Rightarrow\)AODC là tg nt
c) \(\Delta COD\)cân tại D \(\Rightarrow\widehat{DCO}=\widehat{DOC}\)và CD =OD
Do AODC là tg nt \(\Rightarrow\widehat{DOC}=\widehat{DAO}\)(2 góc nt cùng chắn cung OD) và \(\widehat{DOC}=\widehat{DAC}\)(2 góc nt chắn cung CD)
Suy ra \(\widehat{DAC}=\widehat{DAO}\)
Mà \(\widehat{DAC}\)là góc nt chắn cung CM; \(\widehat{DAO}\)là góc nt chắn cung BM
\(\Rightarrow sđ\widebat{CM=sđ\widebat{BM}\Rightarrow}\)M là điểm chính giữa cung BC (vì M \(\in\)BC)
Vậy \(\Delta DOC\)cân tại D thì M là điểm chính giữa cung BC
Đáp án là C