Cho x , y ∈ R thỏa mãn điều kiện 2 y ≥ x 2 và y ≤ - 2 x 3 + 3 x Tìm giá trị lớn nhất của biểu thức P = x 2 + y 2
A. 5
B. 4
C. 3
D. 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1=x+y=\frac{x}{2}+\frac{x}{2}+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}\ge5\sqrt[5]{\left(\frac{x}{2}\right)^2\left(\frac{y}{3}\right)^3}\)
\(\Leftrightarrow1\ge5\sqrt[5]{\frac{x^2y^3}{108}}\Rightarrow\frac{1}{5}\ge\sqrt[5]{\frac{x^2y^3}{108}}\Rightarrow\frac{x^2y^3}{108}\le\frac{1}{3125}\)
\(\Rightarrow x^2y^3\le\frac{108}{3125}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\x+y=1\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{3}{5}\end{cases}}}\)
Vậy...
Điều kiện \(x\ge-1\) và \(y\ge-2\). Gọi T là tập giá trị của K. Khi đó \(m\in T\) khi và chỉ khi hệ sau có nghiệm :
\(\begin{cases}x-3\sqrt{x+1}=3\sqrt{y+2}-y\\x+y=m\end{cases}\) \(\Leftrightarrow\begin{cases}3\left(\sqrt{x+1}+\sqrt{y+2}\right)=m\\x+y=m\end{cases}\) (1)
Đặt \(u=\sqrt{x+1};v=\sqrt{y+2}\), điều kiện \(u\ge0;v\ge0\)
Thay vào (1), ta được :
\(\begin{cases}3\left(u+v\right)=m\\u^2+v^2=m+3\end{cases}\) \(\Leftrightarrow\begin{cases}u+v=\frac{m}{3}\\uv=\frac{1}{2}\left(\frac{m^2}{9}-m-3\right)\end{cases}\)
Hay u và v là nghiệm của phương trình :
\(t^2-\frac{m}{3}t+\frac{1}{2}\left(\frac{m^2}{9}-m-3\right)=0\)
\(\Leftrightarrow18t^2-6mt+m^2-9m-27=0\) (2)
Hệ (1) có nghiệm x, y thỏa mãn điều kiện \(x\ge-1\) và \(y\ge-2\) khi và chỉ khi (2) có nghiệm không âm, hay :
\(\begin{cases}\Delta'=-9\left(m^2-18m-54\right)\ge0\\S=\frac{m}{3}\ge0\\P=\frac{m^2-9m-27}{18}\ge0\end{cases}\)
\(\Leftrightarrow\frac{9+3\sqrt{21}}{2}\le m\le9+3\sqrt{15}\)
Vậy \(T=\left[\frac{9+3\sqrt{21}}{2};9+3\sqrt{15}\right]\)
Suy ra Max K = \(\frac{9+3\sqrt{21}}{2}\)
Min K = \(9+3\sqrt{15}\)
https://diendantoanhoc.net/topic/182493-%C4%91%E1%BB%81-thi-tuy%E1%BB%83n-sinh-v%C3%A0o-l%E1%BB%9Bp-10-%C4%91hsp-h%C3%A0-n%E1%BB%99i-n%C4%83m-2018-v%C3%B2ng-2/
bài này năm trrong đề thi tuyển sinh vào lớp 10 ĐHSP Hà Nội Năm 2018 (vòng 2) bn có thể tìm đáp án trên mạng để tham khảo
a)
\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)
\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)
Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)
Nên \(x+y+2=0\Rightarrow x+y=-2\)
Ta có :
\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)
Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)
\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)
hay \(M\le-2\)
Dấu "=" xảy ra khi \(x=y=-1\)
Vậy \(Max_M=-2\)khi \(x=y=-1\)
c) ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^ , mình làm bài này với điều kiện x ,y ,z ko âm nhé )
Ta có :
\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)
\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)
\(\Rightarrow y=2-x\)
Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)
\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)
\(\Leftrightarrow z=\frac{4-x}{3}\)
Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :
\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)
\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)
\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))
Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )
Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)
Từ giả thiết bài toán suy ra
y ≥ 0 x 2 2 ≤ - 2 x 2 + 3 x ⇔ y ≥ 0 5 x 2 - 6 x ≤ 0 ⇔ y ≥ 0 0 ≤ x ≤ 6 5
Ta có
x 2 + y 2 ≤ x 2 + - 2 x 2 + 3 x 2 = 4 x 4 - 12 x 3 + 10 x 2
Ta có f ' x = 4 x x - 1 x - 5
f ' x = 0 x = 0 x = 1 x = 5 So điều kiện, chọn x = 0 ; x = 1 ; f(0); f(1) = 2; f 6 5 = 1224 625
Vậy m a x P = 2
Đáp án D