Chứng tỏ rằng B chia 21 dư 2022 với
B = 2+2^2+2^3+2^4+...+2^15+2022
Giúp em với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: a*S=a^2+a^3+...+a^2023
=>(a-1)*S=a^2023-a
=>\(S=\dfrac{a^{2023}-a}{a-1}\)
b: a*B=a^2-a^3+...-a^2023
=>(a+1)B=a-a^2023
=>\(B=\dfrac{a-a^{2023}}{a+1}\)
Lời giải:
Đặt $A=1-2+2^2-2^3+2^4-2^5+2^6-....-2^{2021}+2^{2022}$
$A=1+(-2+2^2-2^3)+(2^4-2^5+2^6)+(-2^7+2^8-2^9)+...+(2^{2020}-2^{2021}+2^{2022})$
$A=1+(-2+2^2-2^3)+2^3(2-2^2+2^3)+2^6(-2+2^2-2^3)+....+2^{2019}(2-2^2+2^3)$
$=1+(-6)+2^3.6+2^6(-6)+....+2^{2019}.6$
$=1+6(-1+2^3-2^6+...+2^{2019})$
Suy ra $A$ chia $6$ dư $1$/
bài 1:vì:số dư 2 trừ số dư 2 = số dư 0,0 ko có giá trị
bài 2:vì:số dư 1 cộng số dư 3 cộng số dư 5 = số dư 9,9 chia hết cho 9
bài 3:có lẽ là lỗi đề chứ mình chịu
bài 4:vì:số dư 4 trừ số dư 3 -số dư 1= số dư 0,0ko có giá trị
học tốt bạn nhé
Bài 1:vì 15 chia hết cho 5 suy ra 2022.15 chia hết cho 5
vì 25 chia hết cho 5 suy ra 2022.15 + 25 chia hết cho 5
ko thể bạn nhé,2022 vẫn chia được cho 21 mà