K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2016

vì n là số nguyên tố >3 suy ra n không chia hết cho 3

suy ra n=3k+1(1)

n=3k+2(2)

từ (1)(2) ta có 

+.n=3k+1 thì n2+2015=(3k+1)2+2015=9k2+6k+2016 chia hết cho 3 và lớn hơn 3 (3)

+ n=3k+2 thì n2+2015=(3k+2)2+2015=9k2+12k+2016 chia hết cho 3 và lớn hơn 3 (4)

từ (3)(40 suy ra n2+2015 là hợp số

24 tháng 2 2019

Câu hỏi của Phan Nguyễn Hà My - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo bài của bạn thiên thần quyền năng trí tuệ nhé!

17 tháng 2 2022

Vì a,b là các số nguyên tố lớn hơn 3

=> a,b chia 3 có dư là 1,2

=> a^2,b^2 chia 3 có dư là 1

=> a^2 - b^2 ⋮ 3 (1)

Vì a,b là các số nguyên tố lớn hơn

=> a,b chia 8 dư 1,3,5,7

=> a^2,b^2 chia 8 dư 1

=> a^2 - b^2 ⋮ 8 (2)

Từ (1) và (2), ta có a^2 - b^2 ⋮ 24 (đpcm)

23 tháng 3 2020

3 cách nhé mọi người , ai lm đc 3 cách thì mik sẽ cho nhé

23 tháng 3 2020

                                                         Bài giải

n là số nguyên tố lớn hơn 3 nên có dạng 3k + 1 ; 3k + 2

Ta có :

Với n = 3k + 1 thì \(n^2+2015=\left(3k+1\right)^2+2015=9k^2+6k+1+2015=9k^2+6k+2016\)

\(=3\left(3k^2+2k+672\right)\text{ }⋮\text{ }3\text{ ( là hợp số )}\)

Với n = 3k + 2 thì \(n^2+2015=\left(3k+2\right)^2+2015=9k^2+12k+4+2015=9k^2+12k+2019\)

\(=3\left(k^2+4k+673\right)\text{ }⋮\text{ }3\text{ ( là hợp số ) }\)

Vậy n là số nguyên tố lớn hơn 3 thì \(n^2+2015\) là hợp số

5 tháng 4 2018

n2 + 2015 là số ng tố

2 tháng 4 2018

Vì n là số nguyên tố lớn hơn 3 nên n2 chia cho 3 dư 1.
=> n2
 có dạng 3k+1
=>n2+2006=3k+1+2006=3k+2007
Vì 3k chia hết cho 3
2007 chia hết cho 3
=> 3k+1+2006 chia hết cho 3
=>n2+2006 chia hết cho 3 nên nó là hợp số

2 tháng 2 2019

Do n là số nguyên tố lớn hơn 3

=>n không chia hết cho 3

=>n=3k+1 hoặc a=3k+2   (k khác 0)

Xét n=3k+1

=>n^2+2015=9k^2+2+2015=9k^2+2017 (n không chia hết cho 3) (1)

Xét n=3k+2

=>n^2+2015=9k^2+4+2015=9k^2+2019 (n ko chia het cho 3)  (2)

(1)(2)=>n^2 là số nguyên tố

2 tháng 2 2019

Vì n > 3 nên n có dạng 3k+1 và 3k+2.

TH1: nếu n có dạng 3k+1 thì:

n^2+2015= (3k+1)^2+2015=(3k+1).(3k+1)+2015=(3k+1).3k+3k+1+2015=9k^2.3k+3k+2015

Vì 9k.3k chia hết cho 3

3k chia hết cho 3

2015 không chia hết 3

=> n^2+2015 là số nguyên tố.

TH2:nếu n có dạng 3k+2 thì:

n^2+2015=(3k+2)^2+2015=(3k+2).(3k+2)+2015=(3k+2).3k+(3k+2).2+2015=9k^2+6k+6k+4+2015=9k^2+12k+2019

Vì 9k^2 chia hết cho 3

12k chia hết cho3

2019 chia hết cho 3

=>n^2+2015 là hợp số

Vậy nếu n có dang 3k+1 thì n^2+2015 là số nguyên tố.

       nếu n có dạng 3k+2 thì n^2+2015 là hợp số.

k cho mk nha bạn