Cho M=(a+b)-(b-c-a)+(c-a). Với b,c thuộc số nguyên ,a thuộc số âm.CM rằng: M<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
x = \(\frac{a}{m}=\frac{a+a}{2m}\)
\(y=\frac{b}{m}=\frac{b+b}{2m}\)
Vì x<y, => a<b
Vì a< b => \(\frac{a+a}{2m}<\frac{a+b}{2m}<\frac{b+b}{2m}\)
Vậy x < z < y nếu z =\(\frac{a+b}{2m}\)
Với a, b ∈ Z, b> 0
- Khi a , b cùng dấu thì \(\frac{a}{b}\)> 0
- Khi a,b khác dấu thì \(\frac{a}{b}\)< 0
Tổng quát: Số hữu tỉ \(\frac{a}{b}\) ( a,b ∈ Z, b # 0) dương nếu a,b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
Thấy bài này có trong vbt ,cũng dễ mà sao nhìu người hỏi quá z:v
\(\left\{{}\begin{matrix}x=\dfrac{a}{m}\Rightarrow x=\dfrac{2a}{2m}\\y=\dfrac{b}{m}\Rightarrow y=\dfrac{2b}{2m}\end{matrix}\right.\)\(x< y\Rightarrow a< b\)
\(\Rightarrow\left\{{}\begin{matrix}a+a< a+b\Rightarrow2a< a+b\Rightarrow\dfrac{2a}{2m}< \dfrac{a+b}{2m}\\b+b>a+b\Rightarrow2b>a+b\Rightarrow\dfrac{2b}{2m}>\dfrac{a+b}{2m}\end{matrix}\right.\)
\(\Rightarrow\dfrac{2a}{2m}< \dfrac{a+b}{2m}< \dfrac{2b}{2m}\) \(\Leftrightarrow x< z< y\)
\(\rightarrowđpcm\)
Đối với bạn dễ nhưng đối với tụi mình thì khó nhé!và tiện thể hỏi luôn sao bạn ko làm câu 1 đi mới àm câu 2 vậy và ở câu hai chữ đpcm là gì? bạn phải ghi rõ ràng ra chứ!
-a+b-b-c+a+c-a
=-(a-a+a)+(b-b)-(c-c)
=-a+0-0
M ko phải số dương
Có M=N
=>a-b+c+1=a+2
=>-b+c+1=a+2-a
=>-b+c+1=2
=> c-b=1
Hai số nguyên liền nhau là 2 số có khoảng cách bằng 1
=> c,b là hai số nguyên liền nhau.
Học tốt =P