tinh 3.5-2^2015 biet rang S=1-2+2^2-2^3+...+2014
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
S - P = (1 - 1/2 + 1/3 -1/4+ ...+ 1/1007 - 1/1008 + ...+ 1/2013 - 1/2014 + 1/2015) - (1/1008 + 1/1009 + ...+1/2014 + 1/2015)
=1 - 1/2 + 1/3 - 1/4 + ... + 1007 -2/1008 - ... - 2/2014
= 1 - 1/2 + 1/3 - 1/4 + ...+ 1/1007 - 2/1008 - 2/1010 - ...- 2/2012 - 2/2014
= 1 - 1/2 + 1/3 - 1/4 + ....+ 1007 - 1/504 - 1/505 - ...- 1/1006 - 1/1007
= 1 - 1/2 + 1/3 - 1/4 + ...1/503 - 1/504 + 1/505 + ...+ 1/1005 - 1/1006 + 1/1007 - 1/504 - 1/505 - ...- 1/1006 - 1/1007
= 1 - 1/2 + 1/3 - 1/4 + ...1/503 - 2/504 - 2/506 - ..- 2/1006
= 1 - 1/2 + 1/3 - 1/4 + ...1/503 - 1/252 - 1/253 - ...- 1/503
Lại tiếp tục như trên, Lẻ mất, chẵn còn => S - P = 0 => (S-P)2015=0
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2015.2016}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}\)
\(S=1-\frac{1}{2016}=\frac{2015}{2016}\)
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-........+\frac{1}{2015}-\frac{1}{2016}\)
\(S=\frac{1}{1}-\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+......+\left(-\frac{1}{2015}+\frac{1}{2015}\right)-\frac{1}{2016}\)
\(S=\frac{1}{1}-\frac{1}{2016}=\frac{2015}{2016}\)
S = 1/1x2 + 1/2x3 + 1/3x4 + ... + 1/2014x2015 + 1/2015x2016
S = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2014 - 1/2015 + 1/2015 - 1/2016
S = 1 - 1/2016
S = 2015
\(S=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{29}-\dfrac{1}{31}=1-\dfrac{1}{31}=\dfrac{30}{31}\)
P=2014/2015=1-1/2015
mà 1/31>1/2015
nên S<P
\(S=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{29\cdot31}\\ =\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{29}-\dfrac{1}{31}\\ =\dfrac{1}{1}-\dfrac{1}{31}\\ =\dfrac{30}{31}\)
mà \(\dfrac{30}{31}>\dfrac{2014}{2015}\Rightarrow S>P\)
So sánh vs j nhỉ .-.?
`S=1-1/3+1/3-1/5+...+1/29-1/31`
`S=1-1/31=30/31`
a)
\(\hept{\begin{cases}\left(x^2-9x\right)^2\ge0\\!y-2!\ge0\end{cases}\Rightarrow GTNN=10}\) đẳng thức đạt được khi y=2 và \(\orbr{\begin{cases}x=0\\x=9\end{cases}}\)
b)
cách 1: ghép tạo số hạng (x-2015)
E=x^9(x-2015)+x^8(x-2015)+....+x(x-2015)+x-1=2014 tại x=2015
hoặc
x^10-1=(x-1)(x^9+x^8+..+1) cái này cơ bản
-2014x^9-2014x-2014+2014 thêm 2014 bớt 2014
(x^9+x^8+..+1)(x-1-2014)+2014=(x-2015)(x^9+..+1)+2014=2014
Đặt 12 + 22 + 32 + ..... + 102 = 385
=> 22(12 + 22 + 32 + ..... + 102) = 385.22
=> 22 + 42 + 62 + ...... + 202 = 385.4
=> 22 + 42 + 62 + ...... + 202 = 1540