K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2019

Đáp án B

a: Xét tứ giác ADBE có

\(\widehat{ADB}+\widehat{AEB}=90^0+90^0=180^0\)

nên ADBE là tứ giác nội tiếp

=>A,D,B,E cùng thuộc một đường tròn

b: Xét tứ giác ADCF có

\(\widehat{ADC}+\widehat{AFC}=90^0+90^0=180^0\)

nên ADCF là tứ giác nội tiếp

=>A,D,C,F cùng thuộc một đường tròn

c: Xét tứ giác BEFC có

\(\widehat{BEC}=\widehat{BFC}=90^0\)

=>BEFC là tứ giác nội tiếp

=>B,E,F,C cùng thuộc một đường tròn

loading...

31 tháng 12 2023

a: Ta có: ΔADB vuông tại D

=>D,A,B cùng nằm trên đường tròn đường kính AB(1)

Ta có: ΔEAB vuông tại E

=>E,A,B cùng nằm trên đường tròn đường kính AB(2)

Từ (1),(2) suy ra D,A,E,B cùng thuộc một đường tròn

b: Ta có: ΔADC vuông tại D

=>D nằm trên đường tròn đường kính AC(3)

Ta có: ΔCFA vuông tại F

=>F nằm trên đường tròn đường kính AC(4)

Từ (3) và (4) suy ra C,F,A,D cùng thuộc một đường tròn

c: Ta có:ΔCEB vuông tại E

=>E nằm trên đường tròn đường kính CB(5)

ta có: ΔCFB vuông tại F

=>F nằm trên đường tròn đường kính CB(6)

Từ (5),(6) suy ra B,C,F,E cùng thuộc một đường tròn

11 tháng 4 2018

Đáp án C

Giả sử 

Hoành độ điểm D là nghiệm phương trình: 

 

Hoành độ điểm E là nghiệm của phương trình: 

 

Hoành độ điểm F là nghiệm của phương trình: 

 

Khi đó 

5 tháng 3 2018

Chọn C

Gọi A (d; e; f) thì A thuộc mặt cầu (S1): (x - 1)+ (y - 2)+ (z- 3)= 1 có tâm I= (1; 2; 3)bán kính R= 1

B (a; b; c) thì B thuộc mặt cầu (S2): (x - 3)+ (y - 2)+ z= 9 có tâm I= (-3; 2; 0), bán kính R= 3

Ta có I1I2 = 5 > R+ R=> (S1và (S2) không cắt nhau và ở ngoài nhau. 

Dễ thấy F = AB, AB max khi ≡ A1; B ≡ B1

=> Giá trị lớn nhất bằng I1I2 + R+ R= 9.

AB min khi ≡ A2; B ≡ B2 

=> Giá trị nhỏ nhất bằng I1I2 - R- R= 1.

Vậy M - m =8

NV
9 tháng 1 2023

ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{x+1}=y\ge0\)

\(\Rightarrow4x^2+12xy=27y^2\)

\(\Leftrightarrow\left(2x-3y\right)\left(2x+9y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3y=2x\\9y=-2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3\sqrt{x+1}=2x\left(x\ge0\right)\\9\sqrt{x+1}=-2x\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}9\left(x+1\right)=4x^2\left(x\ge0\right)\\81\left(x+1\right)=4x^2\left(x\le0\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{81-9\sqrt{97}}{8}\end{matrix}\right.\)