K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2018

Vẽ B E → = A B → .

Khi đó  A B → , B C → = B E → , B C → = C B E ^ = 180 − C B A ^ = 120 0

⇒ cos A B → , B C → = cos 120 0 = − 1 2 .

Tương tự, ta cũng có  cos B C → , C A → = cos C A → , A B → = − 1 2 .

Vậy cos A B → , B C → + cos B C → , C A → + cos C A → , A B → = − 3 2 .

ĐÁP ÁN C

13 tháng 9 2018

Chọn A.

Giả sử A = α; B + C = β.

Biểu thức trở thành P =  sinα.cosβ - cosα.sinβ.

Trong tam giác ABC, có A + B + C = 1800 nên α + β = 1800.

Do hai góc α và β bù nhau nên sinα = sinβ và cosα = - cosβ.

Do đó, P = sinα.cosβ - cosα.sinβ = -sinα.cosα + cosα.cosβ = 0.

11 tháng 2 2018

Giả sử A ^ = α ;   B ^ + C ^ = β . Biểu thức trở thành P = sin α cos β + cos α sin β .

Trong tam giác ABC, có A ^ + B ^ + C ^ = 180 ° ⇒ α + β = 180 ° .

Do hai góc α  và β  bù nhau nên sin α = sin β ; cos α = − cos β .

Do đó, P = sin α cos β + cos α sin β = − sin α cos α + cos α sin α = 0 .

Chọn A.

16 tháng 4 2017

Giả sử A ^ = α ;   B ^ + C ^ = β . Biểu thức trở thành P = cos α cos β − sin α sin β .

Trong tam giác ABC có A ^ + B ^ + C ^ = 180 ° ⇒ α + β = 180 ° .

Do hai góc α  và β  bù nhau nên sin α = sin β ; cos α = − cos β .

Do đó P = cos α cos β − sin α sin β = − cos 2 α − sin 2 α = − sin 2 α + cos 2 α = − 1 .

 Chọn C.

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có: \(A+B+C=180^o\)

a)

\(\sin (B + C) = \sin \left( {{{180}^o} - A} \right) = \sin A\)

Vậy \(\sin A = \sin \;(B + C)\)

b)

\(\cos (B + C) = \cos \left( {{{180}^o} - A} \right) =  - \cos A\)

Vậy \(\cos A =  - \cos \;(B + C)\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Định lí cosin: Trong tam giác ABC

\(\begin{array}{l}{a^2} = {b^2} + {c^2} - \,2b\,c.\cos A\quad (1)\\{b^2} = {a^2} + {c^2} - \,2a\,c.\cos B\quad (2)\\{c^2} = {b^2} + {a^2} - \,2ab.\cos C\quad (3)\end{array}\)

Ta có \((1) \Leftrightarrow 2bc\cos A = {b^2} + {c^2} - {a^2}\, \Leftrightarrow \cos A = \frac{{{b^2} + {c^2} - {a^2}\,}}{{2b\,c}}.\)

Tương tự từ (2) và (3) ta suy ra \(\cos B = \frac{{{a^2} + {c^2} - {b^2}\,}}{{2a\,c}}\); \(\cos C = \frac{{{b^2} + {a^2} - {c^2}\,}}{{2b\,a}}\)