K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

15 tháng 10 2023

3:

\(\lim\limits_{n\rightarrow\infty}\dfrac{2-5^{n-2}}{3^n+2\cdot5^n}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{\dfrac{2}{5^n}-\dfrac{5^{n-2}}{5^n}}{\dfrac{3^n}{5^n}+2\cdot\dfrac{5^n}{5^n}}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{\dfrac{2}{5^n}-\dfrac{1}{25}}{\left(\dfrac{3}{5}\right)^n+2\cdot1}\)

\(=-\dfrac{1}{25}:2=-\dfrac{1}{50}\)

1:

\(=\lim\limits_{n\rightarrow\infty}\dfrac{3^n-4^n\cdot4}{3^n\cdot9+4^n}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{\dfrac{3^n}{4^n}-4}{3^n\cdot\dfrac{9}{4^n}+1}\)

\(=-\dfrac{4}{1}=-4\)

15 tháng 10 2023

\(1,\lim\limits_{n\rightarrow\infty}\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}\left(1\right)\)

\(\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}=\dfrac{-\dfrac{n^2}{n^4}+\dfrac{2n}{n^4}+\dfrac{1}{n^4}}{\sqrt{\dfrac{3n^4}{n^4}+\dfrac{2}{n^4}}}=\dfrac{-\dfrac{1}{n^2}+\dfrac{2}{n^3}+\dfrac{1}{n^4}}{\sqrt{3+\dfrac{2}{n^4}}}\)

\(\Rightarrow\left(1\right)=\dfrac{-lim\dfrac{1}{n^2}+2lim\dfrac{1}{n^3}+lim\dfrac{1}{n^4}}{\sqrt{lim\left(3+\dfrac{2}{n^4}\right)}}\)

\(=\dfrac{0}{\sqrt{lim\left(3+\dfrac{2}{n^4}\right)}}=0\)

\(2,\lim\limits_{n\rightarrow\infty}\left(\dfrac{4n-\sqrt{16n^2+1}}{n+1}\right)\left(2\right)\)

\(\dfrac{4n-\sqrt{16n^2+1}}{n+1}=\dfrac{\dfrac{4n}{n^2}-\sqrt{\dfrac{16n^2}{n^2}+\dfrac{1}{n^2}}}{\dfrac{n}{n^2}+\dfrac{1}{n^2}}=\dfrac{\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}}{\dfrac{1}{n}+\dfrac{1}{n^2}}\)

\(\Rightarrow\left(2\right)=\dfrac{lim\left(\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}\right)}{lim\left(\dfrac{1}{n}+\dfrac{1}{n^2}\right)}=\dfrac{lim\left(\dfrac{4}{n}-\sqrt{16+\dfrac{1}{n^2}}\right)}{0}\)

Vậy giới hạn \(\left(2\right)\) không xác định.

\(3,\lim\limits_{n\rightarrow\infty}\left(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}\right)\left(3\right)\)

\(\dfrac{\sqrt{9n^2+n+1}-3n}{2n}=\dfrac{\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}}{\dfrac{2}{n}}\)

\(\Rightarrow\left(3\right)=\dfrac{lim\left(\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}\right)}{2lim\dfrac{1}{n}}=\dfrac{lim\left(\sqrt{9+\dfrac{1}{n}+\dfrac{1}{n^2}}-\dfrac{3}{n}\right)}{0}\)

Vậy \(lim\left(3\right)\) không xác định.

15 tháng 10 2023

2:

\(\lim\limits_{n\rightarrow\infty}\dfrac{3^n+1}{2^n-1}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{\dfrac{3^n}{3^n}+\dfrac{1}{3^n}}{\dfrac{2^n}{3^n}-\dfrac{1}{3^n}}=\lim\limits_{n\rightarrow\infty}\dfrac{1+\dfrac{1}{3^n}}{\left(\dfrac{2}{3}\right)^n-\dfrac{1}{3^n}}=1\)

15 tháng 10 2023

1:

\(K=\lim\limits_{n\rightarrow\infty}\dfrac{3\cdot2^n-3^n}{2^{n+1}+3^{n+1}}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{3\cdot2^n-3^n}{2^n\cdot2+3^n\cdot3}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{3\cdot\dfrac{2^n}{3^n}-1}{\left(\dfrac{2}{3}\right)^n\cdot2+3}\)

\(=-\dfrac{1}{3}\)

2: 

\(\lim\limits_{n\rightarrow\infty}\dfrac{3^n-4^{n+1}}{3^{n+2}+4^n}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{3^n-4^n\cdot4}{3^n\cdot9+4^n}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{\left(\dfrac{3}{4}\right)^n-4}{\left(\dfrac{3}{4}\right)^n\cdot9+1}=-\dfrac{4}{1}=-4\)

15 tháng 10 2023

1:

\(\lim\limits_{n\rightarrow\infty}\dfrac{7^n+4}{3\cdot7^n+4^n}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{1+\dfrac{4}{7^n}}{3+\left(\dfrac{4}{7}\right)^n}=\dfrac{1}{3}\)

2: \(\lim\limits_{n\rightarrow\infty}\dfrac{1-4^n}{1+4^n}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{\dfrac{1}{4^n}-1}{\dfrac{1}{4^n}+1}=-\dfrac{1}{1}=-1\)

15 tháng 10 2023

1:

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^3+3n^2+1-n^3}{\sqrt[3]{n^3+3n^2+1}+n}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{3n^2+1}{\sqrt[3]{n^3+3n^2+1}+n}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(3+\dfrac{1}{n^2}\right)}{n\left(\sqrt[3]{1+\dfrac{3}{n}+\dfrac{1}{n^3}}+1\right)}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n\cdot\left(3+\dfrac{1}{n^2}\right)}{\sqrt[3]{1+\dfrac{3}{n}+\dfrac{1}{n^3}}+1}\)

\(=\lim\limits_{n\rightarrow\infty}n\cdot\lim\limits_{n\rightarrow\infty}\dfrac{3+\dfrac{1}{n^2}}{\sqrt[3]{1+\dfrac{3}{n}+\dfrac{1}{n^3}}+1}\)

\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow\infty}n=+\infty\\\lim\limits_{n\rightarrow\infty}\dfrac{3+\dfrac{1}{n^2}}{\sqrt[3]{1+\dfrac{3}{n}+\dfrac{1}{n^3}}+1}=\dfrac{3}{2}>0\end{matrix}\right.\)

2: 

\(=\lim\limits_{n\rightarrow\infty}\left(\sqrt{4n^2+1}-2n+2n-\sqrt[3]{8n^3+n}\right)\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{4n^2+1-4n^2}{\sqrt{4n^2+1}+2n}+\lim\limits_{n\rightarrow\infty}\dfrac{8n^3-8n^3-n}{4n^2+2n\cdot\sqrt[3]{8n^3+n}+\left(\sqrt[3]{8n^3+n}\right)^2}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{1}{\sqrt{4n^2+1}+2n}+\lim\limits_{n\rightarrow\infty}\dfrac{-n}{4n^2+2n\cdot n\cdot\sqrt[3]{8+\dfrac{1}{n^3}}+\left(n\cdot\sqrt[3]{8+\dfrac{1}{n^3}}\right)^2}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{-n}{4n^2+2n^2\cdot\sqrt[3]{8+\dfrac{1}{n^3}}+n^2\cdot\sqrt[3]{\left(8+\dfrac{1}{n^3}\right)^2}}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{-1}{4n+2n\cdot\sqrt[3]{8+\dfrac{1}{n^3}}+n\cdot\sqrt[3]{\left(8+\dfrac{1}{n^3}\right)^2}}\)

\(=0\)

NV
21 tháng 4 2021

\(\text{Lim}\dfrac{3^n-4^n+1}{2.4^n+2^n}=\lim\dfrac{\left(\dfrac{3}{4}\right)^n-1+\left(\dfrac{1}{4}\right)^n}{2+\left(\dfrac{2}{4}\right)^n}=-\dfrac{1}{2}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(\lim \frac{{2{n^2} + 6n + 1}}{{8{n^2} + 5}} = \lim \frac{{{n^2}\left( {2 + \frac{6}{n} + \frac{1}{{{n^2}}}} \right)}}{{{n^2}\left( {8 + \frac{5}{{{n^2}}}} \right)}} = \lim \frac{{2 + \frac{6}{n} + \frac{1}{n}}}{{8 + \frac{5}{n}}} = \frac{2}{8} = \frac{1}{4}\)

b) \(\lim \frac{{4{n^2} - 3n + 1}}{{ - 3{n^3} + 6{n^2} - 2}} = \lim \frac{{{n^3}\left( {\frac{4}{n} - \frac{3}{{{n^2}}} + \frac{1}{{{n^3}}}} \right)}}{{{n^3}\left( { - 3 + \frac{6}{n} - \frac{2}{{{n^3}}}} \right)}} = \lim \frac{{\frac{4}{n} - \frac{3}{{{n^2}}} + \frac{1}{{{n^3}}}}}{{ - 3 + \frac{6}{n} - \frac{2}{{{n^3}}}}} = \frac{{0 - 0 + 0}}{{ - 3 + 0 - 0}} = 0\).

c) \(\lim \frac{{\sqrt {4{n^2} - n + 3} }}{{8n - 5}} = \lim \frac{{n\sqrt {4 - \frac{1}{n} + \frac{3}{{{n^2}}}} }}{{n\left( {8 - \frac{5}{n}} \right)}} = \frac{{\sqrt {4 - 0 + 0} }}{{8 - 0}} = \frac{2}{8} = \frac{1}{4}\).

d) \(\lim \left( {4 - \frac{{{2^{{\rm{n}} + 1}}}}{{{3^{\rm{n}}}}}} \right) = \lim \left( {4 - 2 \cdot {{\left( {\frac{2}{3}} \right)}^{\rm{n}}}} \right) = 4 - 2.0 = 4\).

e) \(\lim \frac{{{{4.5}^{\rm{n}}} + {2^{{\rm{n}} + 2}}}}{{{{6.5}^{\rm{n}}}}} = \lim \frac{{{{4.5}^{\rm{n}}} + {2^2}{{.2}^{\rm{n}}}}}{{{{6.5}^{\rm{n}}}}} = \lim \frac{{{5^n}.\left[ {4 + 4.{{\left( {\frac{2}{5}} \right)}^{\rm{n}}}} \right]}}{{{{6.5}^n}}} = \lim \frac{{4 + 4.{{\left( {\frac{2}{5}} \right)}^{\rm{n}}}}}{6} = \frac{{4 + 4.0}}{6} = \frac{2}{3}\).

g) \(\lim \frac{{2 + \frac{4}{{{n^3}}}}}{{{6^{\rm{n}}}}} = \lim \left( {2 + \frac{4}{{{{\rm{n}}^3}}}} \right).\lim {\left( {\frac{1}{6}} \right)^{\rm{n}}} = \left( {2 + 0} \right).0 = 0\).

a: \(\lim\limits\left(\dfrac{1}{n^2}\right)=0\)

b: \(lim\left(-\dfrac{3}{4}\right)^n=0\)

22 tháng 10 2023

1: \(-1< =cosx< =1\)

=>\(-3< =3\cdot cosx< =3\)

=>\(y\in\left[-3;3\right]\)

2:

TXĐ là D=R

3: \(L=\lim\limits\dfrac{-3n^3+n^2}{2n^3+5n-2}\)

\(=\lim\limits\dfrac{-3+\dfrac{1}{n}}{2+\dfrac{5}{n^2}-\dfrac{2}{n^3}}=-\dfrac{3}{2}\)

4:

\(L=lim\left(3n^2+5n-3\right)\)

\(=\lim\limits\left[n^2\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)\right]\)

\(=+\infty\) vì \(\left\{{}\begin{matrix}lim\left(n^2\right)=+\infty\\\lim\limits\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)=3>0\end{matrix}\right.\)

5:

\(\lim\limits_{n\rightarrow+\infty}n^3-2n^2+3n-4\)

\(=\lim\limits_{n\rightarrow+\infty}n^3\left(1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}\right)\)

\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow+\infty}n^3=+\infty\\\lim\limits_{n\rightarrow+\infty}1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}=1>0\end{matrix}\right.\)

22 tháng 10 2023

\(1,y=3cosx\)

\(+TXD\) \(D=R\)

Có \(-1\le cosx\le1\)

\(\Leftrightarrow-3\le3cosx\le3\)

Vậy có tập giá trị \(T=\left[-3;3\right]\)

\(2,y=cosx\)

\(TXD\) \(D=R\)

\(3,L=lim\dfrac{n^2-3n^3}{2n^3+5n-2}=lim\dfrac{\dfrac{1}{n}-3}{2+\dfrac{5}{n^2}-\dfrac{2}{n^3}}\)(chia cả tử và mẫu cho \(n^3\))

\(=\dfrac{lim\dfrac{1}{n}-lim3}{lim2+5lim\dfrac{1}{n^2}-2lim\dfrac{1}{n^3}}=\dfrac{0-3}{2+5.0-2.0}=-\dfrac{3}{2}\)

\(4,L=lim\left(3n^2+5n-3\right)\\ =lim\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)\\ =lim3+5lim\dfrac{1}{n}-3lim\dfrac{1}{n^2}\\ =3\)

\(5,\lim\limits_{n\rightarrow+\infty}\left(n^3-2n^2+3n-4\right)\\ =lim\left(1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}\right)\\ =lim1-0\\ =1\)