K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2018

26 tháng 4 2018

Đáp án C.

26 tháng 9 2018

Đáp án C.

Ta có SAD là tam giác đều nên S H ⊥ A D  

Mặt khác S A D ⊥ A B C D ⇒ S H ⊥ A B C D .  

Dựng  B E ⊥ H C ,

do B E ⊥ S H ⇒ B E ⊥ S H C  

Do đó d = B E = 2 a 6 ; S H = a 3 ; A D = 2 a  

Do S C = a 15 ⇒ H C = S C 2 − S H 2 = 2 a 3 .  

Do S A H B + S C H D = 1 2 a A B + C D = S A B C D 2  

suy ra  V S . A B C D = 2 V S . H B C = 2 3 . S H . S B C H

= 3 2 a 3 . B E . C H 2 = 4 a 3 6 .

23 tháng 4 2017

18 tháng 1 2019

Đáp án C

Tam giác SAD đều cạnh 2 a ⇒ S H = a 3 ⇒ H C − 2 a 3 .  

Kẻ BK vuông góc H C ⇒ B K ⊥ S H C ⇒ B K − 2 a 6  

Diện tích tam giác BHC là S Δ B H C = 1 2 B K . H C = 6 a 2 2  

Mà S A B C D = S Δ H A B + S Δ H C D + S Δ H B C = 1 2 S A B C D + S Δ H B C ⇒ S A B C D = 2   x   S Δ H B C = 12 a 2 2  

V S . A B C D = 1 3 . S H . S Δ H B C = 1 3 . a 3 .12 a 2 2 = 4 6 a 3  

24 tháng 6 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

+ Xác định góc của SC với (SAD).

Hạ CE ⊥ AD, ta có E là trung điểm AD và CE ⊥ (SAD) nên ∠(CSE) = 30 o .

∠(CSE) cũng chính là góc giữa SC và mp(SAD).

Trong ΔCSE, ta có:

S E   =   C E . tan 60 o   =   a 3   ⇒   S A   =   S E 2 -   A E 2   =   3 a 2   -   a 2   =   a 2 .

Nhận xét

Gọi M, N lần lượt là trung điểm của AB và AE.

Ta có MN // BE nên MN // CD. Như vậy MN // (SCD). Ta suy ra

d(M,(SCD)) = d(N,(SCD)).

Mà DN/DA = 3/4 nên d(N,(SCD)) = 3/4 d(A,(SCD))

+ Xác định khoảng cách từ A đến (SCD).

Vì vậy tam giác ACD vuông cân tại C nên CD vuông góc với AC.

CD ⊥ AC & CD ⊥ SA ⇒ CD ⊥ (SAC) ⇒ (SCD) ⊥ (SAC).

Hạ AH ⊥ SC, ta có AH ⊥ (SCD).

30 tháng 9 2019

16 tháng 12 2017

Gọi E là trung điểm của AD ta chỉ ra mặt cầu ngoại tiếp hình chóp S.ABC cũng là mặt cầu ngoại tiếp hình

chóp S.EABC .

Từ đó ta đưa về bài toán tìm bán kính của mặt cầu ngoại tiếp hình chóp có cạnh bên vuông góc với đáy.

Sử dụng công thức tính nhanh

với R là bán kính mặt cầu ngoại tiếp hình chóp, r là bán kính

đường tròn ngoại tiếp đáy hình chóp, h là chiều cao hình chóp

Sử dụng công thức tính diện tích mặt cầu

Mà SE vuông góc với AD (do tam giác SAD đều có SE là trung tuyến)

Suy ra SE vuông góc với ( ABCD)=>SE vuông góc với (EABC)

Nhận thấy EABC là hình vuông nên đường tròn ngoại tiếp EABC cũng

là đường tròn ngoại tiếp tam giác ABC

Hay mặt cầu ngoại tiếp hình chóp S.ABC cũng là mặt cầu ngoại tiếp hình chóp S.EABC.

Mà hình chóp S.EABC có cạnh bên SE vuông góc với (EABC) và đáy EABC là hình vuông cạnh a. Gọi I là tâm hình vuông EABC

Suy ra bán kính mặt cầu ngoại tiếp chóp S.EABC là 

28 tháng 11 2017

Đáp án C

Gọi H, M lần lượt là trung điểm của AD, BC.

 AD // (SBC) Þ d(AD, SC) = d(AD,(SBC)) = d(H,(SBC))

Trong tam giác SHM kẻ HK ^ SM tại K

17 tháng 11 2019