Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và SA = SB = SC = a.
Góc giữa mặt bên hình chóp S.ABCD và mặt phẳng đáy có tang bằng:
A. 1
B. 3
C. 3 2
D. Đáp án khác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là giao điểm của AC và BD. Dễ thấy \(\Delta OAB\) vuông tại O và \(OB=\dfrac{a\sqrt{3}}{2}\). Từ đó \(OA=\sqrt{AB^2-OB^2}=\sqrt{\left(\dfrac{\sqrt{3}}{2}a\right)^2-a^2}=\sqrt{\dfrac{1}{4}a^2}=\dfrac{a}{2}\) \(\Rightarrow AC=a\).
Vì \(SA\perp mp\left(ABCD\right)\) nên \(SA\perp AC\) tại A hay \(\Delta SAC\) vuông tại A.
Lại có \(\tan SAC=\dfrac{SA}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\) nên \(\widehat{SAC}=60^o\), suy ra góc giữa SC và mp(ABCD) bằng 60o \(\Rightarrow\) Chọn A
Chỗ \(\widehat{SAC}\) em sửa lại là \(\widehat{SCA}\) mới đúng ạ.
Chọn D.
- Gọi G là trọng tâm tam giác ABC.
- Hình chóp S.ABC là hình chóp đều nên SG ⊥ (ABC).
→ Góc giữa hai mặt phẳng (SBD) và (ABCD) bằng 90 °
Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).
Gọi I là giao điểm của AC và BD.
Từ S vẽ SO ⊥ (ABCD)
⇒ OA = OB = OC (là hình chiếu của các đường xiên bằng nhau)
⇒ O là tâm đường tròn ngoại tiếp tam giác ABC
Ta có: BI là đường trung tuyến của tam giác ABC nên O nằm trên đường thẳng BI hay
Vậy: SO ⊂ (SBD) và SO ⊥(ABCD) ⇒ (SBD) ⊥(ABCD)
Đáp án B
Chọn A.
Ta có:
Do tam giác SAB vuông cân tại A nên SA = AB = a.
Vậy
Đáp án D