K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2021

Các trường hợp bằng nhau của tam giác thường là:

+) cạnh.cạnh.cạnh (c.c.c)

+) cạnh.góc.cạnh (c.g.c)

+) Góc.cạnh.góc (g.c.g)

Các trường hợp bằng nhau trong tam giác vuông là:

+) Hai cạnh góc vuông

+) Cạnh góc vuông và một góc nhọn kề cạnh ấy

+) Cạnh huyền và một góc nhọn kề cạnh ấy

+) Cạnh huyền và một cạnh góc vuông
  Mik trả lời có đúng ko ạ nếu đúng bạn k nha

7 tháng 11 2021

Các trường hợp bằng nhau của tam giác thường là:

+) cạnh.cạnh.cạnh (c.c.c)

+) cạnh.góc.cạnh (c.g.c)

+) Góc.cạnh.góc (g.c.g)

Các trường hợp bằng nhau trong tam giác vuông là:

+) Hai cạnh góc vuông

+) Cạnh góc vuông và một góc nhọn kề cạnh ấy

+) Cạnh huyền và một góc nhọn kề cạnh ấy

+) Cạnh huyền và một cạnh góc vuông

14 tháng 3 2018

Shouldn't they play with the cat ? 

dịch : họ không nên chơi với mèo ?

trả lời : Yes , they shouldn't 

Because it may scatch they face

11 tháng 10 2021

sdvvvdfdfdfdfdfdfdfdfdfdfdfdfdfdfdfggggggggggggggggggggggg

11 tháng 10 2021

Được nhà bạn 😊😊😊😊😊😊😊😊

25 tháng 2 2018

con tim 

25 tháng 2 2018

con tim

19 tháng 4 2020

(1000×0)-187+722=1092 cái này 

19 tháng 4 2020

mình gửi nhầm 

19 tháng 7 2018

​Bài 1:

I. Trường hợp bằng nhau thứ nhất của tam giác cạnh – cạnh – cạnh:

1) Vẽ tam giác biết độ dài 3 cạnh:  (HS tự nêu các bước vẽ)

VD: Vẽ rABC biết AB = 3cm, BC = 5cm, AC = 4cm.

2)  Trường hợp bằng nhau cạnh – cạnh – cạnh:

“Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.”

II. Trường hợp bằng nhau thứ nhất của tam giác cạnh – góc – cạnh:

1) Vẽ tam giác biết độ dài 2 cạnh và 1 góc xen giữa:

(HS tự nêu các bước vẽ)

VD: Vẽ rABC biết AB = BC = 4cm,  

2)  Trường hợp bằng nhau cạnh – góc – cạnh:

“Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau.”

* Lưu ý:  Cặp góc bằng nhau phải xen giữa hai cặp cạnh bằng nhau thì mới kết luận được hai tam giác bằng nhau.

III. Trường hợp bằng nhau thứ nhất của tam giác góc – cạnh – góc:

1) Vẽ tam giác biết độ dài 1 cạnh và 2 góc kề:

(HS tự nêu các bước vẽ)

VD: Vẽ rABC biết AC = 5cm, 

2)  Trường hợp bằng nhau góc – cạnh – góc:

“Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau.”

19 tháng 7 2018

 * Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.

* Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề ấy cạnh của tam giác vuông kia thì hai tam giác vuông đó bằng nhau. (g-c-g)

                

* Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau. (ch-gn)

                    

31 tháng 3 2021

"Lượm" là một trong những bài thơ hay của nhà văn Tố Hữu được đông đảo thế hệ học sinh yêu thích(1).Bài thơ ra đời năm 1949 trong thời kỳ kháng chiến chống thực dân Pháp(2).Bài thơ kể về cuộc đời cách mạng của Lượm(3).Chú bé Lượm hiện lên thật ngây thơ,tinh nghịch,hăng hái(4).Lượm là chú bé liên lạc trên chiến trường đầy nguy hiểm, cạm bẫy luôn rình rập cậu(5).Nhưng vì lòng yêu nước và sự dũng cảm của mình Lượm đã xuất sắc hoàn thành những nhiệm vụ được giao(6).Trong một lần đi giao thư "Thượng khẩn" Lượm đã hy sinh, chú bé ngã xuống ngay trên cánh đồng quê hương và cánh đồng như ôm Lượm vào lòng(7).Tuy Lượm đã hy sinh nhưng hình ảnh của chú còn mãi với quê hương, đất nước và trong lòng mọi người(8).Bằng thể thơ bốn chữ, kết hợp miêu tả và biểu hiện cảm xúc bài thơ đã khắc họa thành công hình ảnh chú bé Lượm(9).Tấm gương dũng cảm và lòng yêu nước của Lượm đáng để mọi người noi theo(10).

9 tháng 4 2021

Thank bạn 👉👈

16 tháng 2 2020

Nếu giá tiền 9 bút chì == giá tiền 6 bút bi thì giá tiền 24 bút bi thì phải trả nhiều hơn 15 bút chì chứ nhỉ???

Bạn thử xem lại đề coi

24 tháng 1 2017

1.- Hai tam giác bằng nhau là hai tam giác mà ba cạnh của tam giác này bằng ba cạnh của tam giác kia và ba góc đối diện với ba cạnh ấy của tam giác này bằng ba góc đối diện với b a cạnh của tam giác kia.

2. -Có 3 trường hợp bằng nhau của 2 tam giác:

+Trường hợp 1: cạnh-cạnh-cạnh(c.c.c).

+Trường hợp 2: cạnh-góc-cạnh(c.g.c).

+Trường hợp 3: góc-cạnh-góc(g.c.g)

3. -Đối với tam giác vuông cũng có các trường hợp như câu trên và trường hợp bằng nhau về cạnh huyền và cạnh góc vuông

4.- Định nghĩa: Tam giác cân là tam giác có hai cạnh bằng nhau

-Tính chất:+Trong 1 tam giác cân, 2 góc ở đáy bằng nhau

+Nếu 1 tam giác có 2 góc bằng nhau thì tam giác đó là tam giác cân

- Cách chứng minh 1 tam giác là tam giác cân:

+ Chứng minh tam giác có 2 cạnh bằng nhau

+ Chứng minh tam giác có 2 góc bằng nhau

+ Chứng minh tam giác có đường trung tuyến vừa là đường cao hoặc phân giác( và ngược lại)

5. - Định nghĩa: Tam giác đều là tam giác có 3 cạnh bằng nhau

- Tính chất:+Trong 1 tam giác đều, mỗi góc bằng 60 độ

+Nếu 1 tam giác có ba góc bằng nhau thì tam giác đó là tam giác đều

+Nếu 1 tam giác cân có 1 góc bằng 60 độ thì tam giác đó là tam giác đều

- Cách chứng minh 1 tam giác là tam giác đều:

+Chứng minh tam giác có 3 cạnh bằng nhau

+Chứng minh tam giác có 3 góc bằng nhau

+Chứng minh tam giác có 2 góc có 60 độ

+Chứng minh tam giác cân có 1 góc có 60 độ

6. -Định lí Py-ta-go: Trong 1 tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông

- Định lí Py-ta-go đảo: Nếu 1 tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông

2 tháng 2 2018

1.- Hai tam giác bằng nhau là hai tam giác mà ba cạnh của tam giác này bằng ba cạnh của tam giác kia và ba góc đối diện với ba cạnh ấy của tam giác này bằng ba góc đối diện với b a cạnh của tam giác kia.

2. -Có 3 trường hợp bằng nhau của 2 tam giác:

+Trường hợp 1: cạnh-cạnh-cạnh(c.c.c).

+Trường hợp 2: cạnh-góc-cạnh(c.g.c).

+Trường hợp 3: góc-cạnh-góc(g.c.g)

3. -Đối với tam giác vuông cũng có các trường hợp như câu trên và trường hợp bằng nhau về cạnh huyền và cạnh góc vuông

4.- Định nghĩa: Tam giác cân là tam giác có hai cạnh bằng nhau

-Tính chất:+Trong 1 tam giác cân, 2 góc ở đáy bằng nhau

+Nếu 1 tam giác có 2 góc bằng nhau thì tam giác đó là tam giác cân

- Cách chứng minh 1 tam giác là tam giác cân:

+ Chứng minh tam giác có 2 cạnh bằng nhau

+ Chứng minh tam giác có 2 góc bằng nhau

+ Chứng minh tam giác có đường trung tuyến vừa là đường cao hoặc phân giác( và ngược lại)

5. - Định nghĩa: Tam giác đều là tam giác có 3 cạnh bằng nhau

- Tính chất:+Trong 1 tam giác đều, mỗi góc bằng 60 độ

+Nếu 1 tam giác có ba góc bằng nhau thì tam giác đó là tam giác đều

+Nếu 1 tam giác cân có 1 góc bằng 60 độ thì tam giác đó là tam giác đều

- Cách chứng minh 1 tam giác là tam giác đều:

+Chứng minh tam giác có 3 cạnh bằng nhau

+Chứng minh tam giác có 3 góc bằng nhau

+Chứng minh tam giác có 2 góc có 60 độ

+Chứng minh tam giác cân có 1 góc có 60 độ

6. -Định lí Py-ta-go: Trong 1 tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông

- Định lí Py-ta-go đảo: Nếu 1 tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông