Thể tích của khối lập phương ABCD.A'B'C'D' có đường chéo AC'= 6 bằng
A. 3 3
B. 2 3
C. 2
D. 2 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Hình nón A.A'BCD' với đáy là hình chữ nhật A'BCD' có diện tích S = A'B.BC = a 2 √2 và chiều cao h = (a 2 )/2 nên có thể tích V = a 3 /3
Đáp án A
Ta có: hình lập phương ABCD.A'B'C'D' có đường chéo bằng a 3
Suy ra cạnh của hình lập phương bằng a.
Vậy V A ' . A B C D = 1 3 h B = 1 3 a . a 2 = a 3 3
\(AC=AB\sqrt{2}=4a\)
Áp dụng định lý Pitago:
\(CC'=\sqrt{\left(AC'\right)^2-AC^2}=3a\)
\(\Rightarrow V=3a.\left(2a\sqrt{2}\right)^2=24a^3\)