K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2017

Chọn C.

a: \(log_49=\dfrac{log9}{log4}=\dfrac{log3^2}{log2^2}=\dfrac{2\cdot log3}{2\cdot log2}=\dfrac{log3}{log2}=\dfrac{b}{a}\)

b: \(log_612=\dfrac{log12}{log6}=\dfrac{log2^2+log3}{log2+log3}=\dfrac{2\cdot log2+log3}{log2+log3}\)

\(=\dfrac{2a+b}{a+b}\)

c: \(log_56=\dfrac{log6}{log5}=\dfrac{log\left(2\cdot3\right)}{log\left(\dfrac{10}{2}\right)}=\dfrac{log2+log3}{log10-log2}\)

\(=\dfrac{a+b}{1-a}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(a,A=log_23\cdot log_34\cdot log_45\cdot log_56\cdot log_67\cdot log_78\\ =log_28\\ =log_22^3\\ =3\\ b,B=log_22\cdot log_24...log_22^n\\ =log_22\cdot log_22^2...log_22^n\\ =1\cdot2\cdot...\cdot n\\ =n!\)

18 tháng 8 2023

a) \(log_315=2,4650\)

c) \(3In2=2,0794\) 

3 tháng 10 2015

ta có \(\left(log^b_a+log^a_b+2\right)\left(log^b_a-log_{ab}^b\right).log_b^a-1=\left(log^b_a+log^a_b+2\right)\left(log^b_a.log_b^a-log_{ab}^b.log_b^a\right)-1=\left(log^b_a+log^a_b+2\right)\left(1-\frac{1}{log_b^{ba}}log_b^a\right)-1=\left(log^b_a+log^a_b+2\right)\left(1-\frac{1}{1+log^a_b}log^a_b\right)-1=\left(log^b_a+log^a_b+2\right)\frac{1}{1+log^a_b}-1=\left(log^a_b+\frac{1}{log^a_b}+2\right)\frac{1}{1+log^a_b}-1=\frac{\left(1+log^a_b\right)^2}{log^a_b}\frac{1}{1+log^a}-1=\frac{1+log^a_b}{log_b^a}-1=\frac{1}{log_b^a}\)

3 tháng 10 2015

 ta có:

\(\left(log^b_a+\frac{1}{log^b_a}+2\right)\left(log^b_a-\frac{1}{log^{ab}_a}\right)log^a_b-1\)\(=\frac{\left(log^b_a+1\right)^2}{log^b_a}\left(log^b_a-\frac{1}{1+log^b_a}\right)log^a_b-1\)\(=\frac{\left(log^b_a+1\right)^2}{log^b_a}\left(1-\frac{log^a_b}{1+log^b_a}\right)-1\)\(==\frac{\left(log^b_a+1\right)^2}{log^b_a}\left(\frac{1}{1+log^b_a}\right)-1=\frac{1+log^b_a}{log^b_a}-1=\frac{1}{log^b_a}\)

4 tháng 5 2016

Ta có \(A=\left(\log^3_ba+2\log^2_ba+\log_ba\right)\left(\log_ab-\log_{ab}b\right)-\log_ba\)

             \(=\left(\log_ba+1\right)^2\left(1-\frac{1}{\log_aab}\right)-\log_ba\)

             \(=\left(\log_ba+1\right)^2\left(1-\frac{1}{1+\log_ab}\right)-\log_ba\)

             \(=\left(\log_ba+1\right)^2\left(1-\frac{\log_ba}{\log_ba+1}\right)-\log_ba\)

             \(=\log_ba+1-\log_ba=1\)

18 tháng 8 2023

a) \(log_50,5=-0,439677\)

c) \(In\left(\dfrac{3}{2}\right)=0,405465\)

AH
Akai Haruma
Giáo viên
12 tháng 11 2018

Bài 1:

\(A=\log_380=\log_3(2^4.5)=\log_3(2^4)+\log_3(5)\)

\(=4\log_32+\log_35=4a+b\)

\(B=\log_3(37,5)=\log_3(2^{-1}.75)=\log_3(2^{-1}.3.5^2)\)

\(=\log_3(2^{-1})+\log_33+\log_3(5^2)=-\log_32+1+2\log_35\)

\(=-a+1+2b\)

AH
Akai Haruma
Giáo viên
12 tháng 11 2018

Bài 2:

\(\log_{30}8=\frac{\log 8}{\log 30}=\frac{\log (2^3)}{\log (10.3)}=\frac{3\log2}{\log 10+\log 3}\)

\(=\frac{3\log (\frac{10}{5})}{1+\log 3}=\frac{3(\log 10-\log 5)}{1+\log 3}=\frac{3(1-b)}{1+a}\)

AH
Akai Haruma
Giáo viên
8 tháng 11 2017

Lời giải:

Đặt \(\log_ab=x\Rightarrow \log_ba=\frac{1}{x}\)

a)

\(A=(x+\frac{1}{x}+2)(x-\frac{1}{x}).\frac{1}{x}\)

\(\Leftrightarrow A=(1+\frac{1}{x^2}+2x)(x-\frac{1}{x})=\left(1+\frac{1}{x}\right)^2(x-\frac{1}{x})\)

\(\Leftrightarrow A=(1+\log_ba)^2(\log_ab-\log_ba)\)

-------------------------------------------------------

b) Điều kiện: \(x>0\)

Có \(1=\log_{ab}b.\log_b(ab)=\log_{ab}b(\log_ba+\log_bb)=\log_{ab}b(\frac{1}{x}+1)\)

\(\Rightarrow \log_{ab}b=\frac{x}{x+1}\)

Như vậy:

\(B=\sqrt{x+\frac{1}{x}+2}(x-\frac{x}{x+1})\sqrt{x}\)

\(\Leftrightarrow B=\sqrt{x^2+1+2x}(x-\frac{x}{x+1})=|x+1|.\frac{x^2}{x+1}\)

\(=(x+1)\frac{x^2}{x+1}=x^2=\log_a^2b\) (do \(x>0)\)

9 tháng 11 2017

thanks

D
datcoder
CTVVIP
15 tháng 8 2023

a) \(\log_a\left(a^2b\right)=\log_aa^2+\log_ab=2.\log_aa+\log_ab=2.1+2=4\)

b) \(\log_a\dfrac{a\sqrt{a}}{b\sqrt[3]{a}}=\log_a\left(a\sqrt{a}\right)-\log_a\left(b\sqrt[3]{b}\right)=\log_aa^{\dfrac{3}{2}}-\log_ab^{\dfrac{4}{3}}=\dfrac{3}{2}.\log_aa-\dfrac{4}{3}\log_ab=\dfrac{3}{2}.1-\dfrac{4}{3}.2=-\dfrac{7}{6}\)

c) \(\log_a\left(2b\right)+\log_a\left(\dfrac{b^2}{2}\right)=\log_a2+\log_ab+\log_ab^2-\log_a2=\log_ab+2\log_ab=3\log_ab=3.2=6\)

a: \(=log_aa^2+log_ab=2+2=4\)

b: \(log_a\left(\dfrac{a\sqrt{a}}{b\sqrt[3]{b}}\right)=log_aa^{\dfrac{3}{2}}-log_ab^{\dfrac{4}{3}}\)

=3/2-4/3*2

=3/2-8/3

=9/6-16/6=-7/6

c: \(log_a\left(2b\right)+log_a\left(\dfrac{b^2}{2}\right)\)

\(=log_a\left(2b\cdot\dfrac{b^2}{2}\right)=log_a\left(b^3\right)=3\cdot2=6\)