Phương trình z 4 - 2 z 2 - 3 = 0 có 4 nghiệm phức z 1 , z 2 , z 3 , z 4 . Giá trị biểu thức T = | z 1 | 2 + | z 2 | 2 + | z 3 | 2 + | z 4 | 2 bằng
A. 4
B. 8
C. 2 3
D. 2 + 2 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(z^2-4z+5=0\Rightarrow\left\{{}\begin{matrix}z_1+z_2=4\\z_1z_2=5\end{matrix}\right.\) theo hệ thức Viet
\(w=\dfrac{z_1+z_2}{z_1z_2}+i.z_1z_2\left(z_1+z_2\right)=\dfrac{4}{5}+i.5.4=\dfrac{4}{5}+20i\)
Chắc bạn ghi nhầm đề \(z_1\overline{z_2}+\overline{z_1}z_2\) mới có lý chứ nhỉ?
Khi pt bậc 2 có 2 nghiệm phức \(z_1;z_2\) thì \(z_1=\overline{z_2}\)
Do đó \(z_1\overline{z_2}+\overline{z_1}z_2=z_1^2+z_2^2=\left(z_1+z_2\right)^2-2z_1z_2=\left(-4\right)^2-2.7=2\)
Đáp án C
A. z=a+bi hoặc z=-a-bi (loại)
B. (loại)
C. giải phương trình bậc hai ẩn z có nghiệm z=a+bi; z=a-bi (thỏa mãn)
Phương trình tương đương với: z 2 = - 1 = i 2 h o ặ c z 2 = 3 .
Các nghiệm của phương trình là: z 1 = i , z 2 = - i , z 3 = 3 , z 4 = - 3 .
Vậy T = 1 + 1 + 3 + 3 = 8
Chọn B